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1. Introduction

The aim of this paper is the study nl'- actions of the sympleclic
and gpinor groups and an outline of their applications to the nedimen-
sional harmoenic escillator and Lo matrix ensembles, 2 The subject of
thiz study was motivated by our research on the conformal grﬁul}-q In
the first part we study properties of actions of Lie-groups on manifolds,
in particular the trajectories associated to elements of the Lie algebra,
We construct explicitly these trajectories in operations of Spin,H] and
Spin(n}; in the case of the transitive action of Sp(n,H) on its symmetric
space, they are the geodesics of the invariant metbric {chapter 3}, The
ralation with the theory of the n-dimensional harmonic oscillator is
given by L.:'1-:.= pl'-:?:p-;er1.:.r5! the Lie algebra of Spin, &), is isomorphic to the
sot of observables, guadratic expressions in the conjugate quantitics
p.,q. The sat of elermments commuting with the T.—]a_ﬁﬁilt-:mian E] ]':-ip_l +

i=
9,49, is the maximal compact subproup SUn) of Spin,E); the stability
property (chapter 4} of the space of holomorphic functions on Spin, B}/ U{n)

leads o the construckion of an orthonormal basis for this space.
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2. Definitions and examples

Let & be a Lie-group: an action of G on a differentiable
manifold M oot necessarily compact) is a differentiable map
GHM =M
ER S ]
such that gl[gz[x]? = glgzi;{}, W e Mn, E: B, G. Therefore an action
i% g'i.vtn. by an homomorphism G - J'_J'Lf:'[Mn:l of O oin the group of dif-
feomorphisms of M.
The orbit of a point x & M~ is the submanifold of M
Gix) = {gx|g = G}
We consider the fellowing group actions:
1. The symplectic group Spin,B) is the set of all 2n X Zn real ma-

trices A which satisfy the relation

T _fﬂE)

ATTA =T whare J =

_ : 2
a). The linear operation of Spin,H) in the cuclidean space B e

ig given by:

& 2
Spin,B) xB“" —+ m°"

A x -+ B

Zn : :
In particular the tangent space T:{[i:x-{ )oim o each point x of a symplec-

2 -
lic manifold i 2 has, by definition, the structure group Spin, E],
It
invariance group of the form E n5|1.:-i Ay -'Jr.]i-
i=l

". ¥ ] -
bl. Let M be an homogeneous apace of the symplectic group

M’ = Spin, B)/H




where H is a closed sebgrovp of Spin,BE); the orbit E::-r. of each point

is ]‘-.-:[r- The most important cases are given by H = {fe}, and Hl-_’. =

1

Spin, B)nS50{2n} = Uin). The quaolient space Spin,®B)/U{n) is the sym-

metric space of the aymplectic group and the complex imbedding
: nin+l) f2
1 : Spin, R}/U(n) — ¢ 2t
iz obtained by the following construction: let -‘:'-nl:'i]:] be the set of sym-

metric makrices of arder n with comslex coefficients and = () the
= n

subset of Sniﬂ:-] given by

wher e Kn,"fn I T-.-TH[EE:I and ‘:’n > [ (the guadratic form of the symme-
tric matrix ‘1’r:I is positive definite). The operation
Spin, W) X E (@) = E (T}
n n

iz defined by:

-1

S - (A5 +A MAS +A4A)
1 i in

1 i !

where A =1 l'| € Spin, ), A « h-In[EIJ- To this unbounded Feali=-

s E;n-.‘n-l-i].".:'.

sation of the symmetric space Spin, B}/ U{n) iz associated

the following bounded rezlisation: let "_in[lﬂ] be the subsct of 5 (@)
n

given by the matrices iSn.!E = énsn}. The action of the symplectic

group
Spin, B X By =B )

is induced by Lhe mapping




F: Z (C)=8B (d)
n n

g —r[E:—iS][E-iS]-]
Il n I

For g e Spin,B) and J_‘-rL £ Bnlflﬁ]
=1
B = Fipg(F B
_E{ n:l (el ( n}]}
We obtain the same resull as in the E’l:r.d';.r{SI of the conformal group 50in, 2},
The mapping F @ EhI:iE] — Eﬁ-{:]:-} induces an isomorphism of the isoltropy
group
|
Wzy) = {5 e Spin, B)|glzg) = 2}
of a point 7o On the topological boundary E'Fln['ifu':l = {Eﬁldﬁf[E - SHSJ =0}
with the group GL[EH-.’I:E]:I af linear transformsations of Enl,"ﬂ].
This subpgroup of Sp(n,®) is obtained by the restriction of the
aparation
) = (G
1 1
: -1
iy —+ {!le. + ﬂE',:II'ﬁEE + “".-1:'
to the linear action, given by

=

i
lf"] ¢ | with A e GLin, B)
o of '

Therefore we have proved

Frooozition:

The isotropy grovp T2 ) ofa point =, oen 853 (C) is isomeoerphic
BY B I | L B s L R n'

to GLin, BE).
2. The secand type of operations are induced by the spinor group Spin(k],

universal covering group of the orthogenal group S50(k). Let Cl& be the

, wilh the rela-

Clifford-algebra generated by the elements e, e o

L




of elements with inverse in the Clifford algebra ©

tions

J’E.&- + -r.j-&.. =0 =il

The criterion of Hurwil.'.'-:? gives for the order n of the repre-
Hﬂ]f:t?.l-iﬂ:l‘.l af the clements tl by matrices Ai g SOn): if n = 3”’15‘5@»‘. + 1)
then k +1 = pin} = z% & 8@, Let C*E EI;-: be the multiplicative group
i The apinoy group
Bpin(k] is the identity component of the subgroup of C):: defined by

the condition : the linear subspace < e 8, . = isidnvariant under

T Ao el

the mapping v = xvx Tx e C#. The spin representation, obtained
by the left translation @#(x) 1 y = xy restricted te = € Spinipin)), in-
duces an acltion of the spinor group on the Stiefel manifelds SO{n) /S0P
(p=1,2,...,n) by the diffromorphisms

EQ{n)fE50(p) = EO(n)

¥y{S0(pl} = Tixly = xy{SO(p)}

The isotropy greup of the peint wie), where. v : 5O(n) — SO{n]) /SC{p)
denotes the canonical projection, is

S p) n Spin pin)
and the orbit of ={e] is the Stiefel-manifeld SO{n)/S0(p} A Spinipin).

We oblain as special cases of this construction the classical

Hopf fibrations:
n=2m, p=2m :__1_ the Clifford algebra CZ is izomorphic to @© and

-1,.1

/5 =

=l

‘e e : i : : 21m
Spin(2} = 5. The action is free and the guotient space is 5




).

<
n=4m, p = 4m - 1: the Clifford algebra C  is isomorphic to the alge-

bra of quaternions and Spin{3) iz isomorphic to the group 5 of gua-
] I I 2 P |

drmi-1

: iy 3 . o
ternions of norm 1: the guoticnt space 5 f87 is the guaternionic

T
projective space P (HL
, 3 - - ; L g : ; aLn B
An interesting application is given by the Hopf fibration 5 — &
with fiber 8 constructed with the division algebra of Cayley numbers.

15
This fibration can be constructed as the guotient space of 57 =

Spin(9)/Spin(?) in an action induced by the spinor represantation of Spin(8).
Py s e - . 16 . - 2
This representation is defined in B and the action of Spin(8] on the
: 15 : e e ] R
guotient space 57 = Spin(3)/Epinl¥) C I is given by
g {h} = {gh}
where g e Spin{8) 2 Spin(2) and {h} i= the class of h & Spin{9). The
- A : 7 3 ;

only type of orbit is Spin(8)/Spin(7) = 5 and the guotient space of the

: gt : S : 15 i e 8
action is S ; therefore we obtain the fibration &7 = Spin(9)/&pin{7) — 5.

The natural extension of this construction is given by the spiner represen-

tation of Spin(n +1):

A . Spin{Zn + 1} — 8027

Zn+l
Let & p be the spinor representation of the gniversal covering

2
group Spin(2™) of S0y (2™): the generalisation of Spin(9)/Spin(7) is the

quolient space

S T | e
Spini2 1WepiniZn + 1)
1)

. - ; . : 5,
= Spin{Zn + 1) is given by ﬂzn_l_il:ﬂl:":d il.

it
where the imbedding Spinid




-

3. The trajectories induced by the group-actions

——

In the action G XM" =M™ of G on M", each element ¥ of

o

the Lie algebra "' of G induces a vector-field X on M. Let '-,r}:I;L']

be the geodesic of the invariant metriec on G, tangent to X at the point

4
e & 0; the exponential map 27— G is defined by exp(¥]) = "-.'J_;[H and

the trajeclory T}fl:r;} of a point g = M™ relative to X

Ty (q} = {'«:-_:{{t:--ql-m <t <o}

We construct the trajectorics of the actions given in chapter Z,

1. Let spin,B) bLe the Lie algebra of the symplectic group:

rex, ®X, 3 | X eM (BR) N

(n, ) = 4| 1 z I| B n l,
A, =t it e |
T _}‘] ) 97 }':-3 symmelric |

The trajectory T}'“'-'I:q]' in the case of the action
m: Spin,B)— 5[_'1'::-],31.]."[.]'[]1:' = ].’&-1:15-:1}.'-]
is given by the geodesic of the invariant metric on F!-nl:'fﬂj. with origin
q and tangent in this point to the projection wlexp X). We apply there-
fore the construction of geodesics in symmetric spaces.
The decompeosition of the symmelric pair associated to Spin, B Uin)
is spin, B) = uln) + hin)
: o TE T _
(/B B\ | g eulnl, g,” =g,

where hin) = 4 I.,
| \ Bz

.

1
~ g { lg, and g, imaginary T
L] ~2 e

There exists a riemannian structure g, on Spinl/Uin) such
5 ]

that the left-translations fla}l on Spin, B) are isometries of the metric

ij




Froposition: The Eendesicaf._l_-:rf the riemannian structure {5]_:-[::1].-"Ul:r1},

g__} are the curves

3

f: t = [dg]. wi{exp(tX]))
where X e hin) and g e Spin, ).
The proof of this stalement is re-:iuced,] 25 the left action of
g e Spin, R} is an isometry, to the study of wlexpitX)) where X & hin).

The projection
™ Spin,R) — fip{l'l.,?._'l.lrUI:]'l.]

is an isometry and by construction the carve exp(EX) is a geodesic on
Spin,B); therefore t— {#(g). w){exp{lX)} is 2 geodesic on Spin, B )/Uin).
We construck an explicit formula for ;i;ij and |EJ._|' The Bearg-
ITiAn Ircz-e=e:rt*:.r*.11lEI is equal to the determinant of the metric tensor, invariant
volume element in Hn[ﬁ::-. The action of épi:ﬁ,l‘&? on Bnifﬂill is given,

according to chapter £, by

B ) — B (C)

n = (AgE A NA 2 A4}_1
h A 'fJﬂl %2 \'ll' satisfies A |Ir oS A = (o0 E)
where = i 2 -EH i Fom e i
_:-5;3 _-f!L‘“. -E O =-E O
; 1 T T T

Therefore

In order to compute the Jacobian of the transformation = — A{z) and

the invariant volume element, we use the fact that the action of Spin, &)

leaves invariant the |.:|-:':-|.:|:1|:].-‘_:"_|-' of Eq{ﬂ'.:, defined b"_:.’ det{E - 2=} = 0.
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nin4l)
2

Taking account of the dimension of B (), we ablain
n

Proposition: The invariant volume element of ].’snleI-] is

—{n+
!g_jl =S o B
1
The trajectories of the action of Spin,R] en L‘-n[tT-I:l are the
2

i ]
+ 5] sl ] e =-|l+ ——— '—_.'.!-
geodesics of the metric gij n + 1) fwiﬁj fn|det(E - ==)|

By using the map F: EHI:IE] — ]_’-nl:ﬂ__.-l- [chapter 2) we reduce the
study of the lrajectories in the action of Spin, B) on the unbounded do-

maikhn
= (@) ={X +i¥Y |¥ =0}
b | It n I

ta the preceding case {bounded domain Enl:'ﬂl}n The mapping F com-

rmutes namely with the action of Spin, ) in the diagram

g & Spln, B)
B e e (L]
n Y
£n
7| v
g e Spin, B)
E (G)— > I (€2)
iy 1

gF = Fg for all g & Spin, B} and therefore the image by 1'“_'1 of a geo-

desic in ]_*-n[[':;l is a peadesic in E (E).
n
: 0 b R o
r In the action of Spin{p(n)) on 5 = S3(n]/50in = 1), constructed
in chapter 2, the trajectories of the ¢lements Fni in the Lie alpebra

spin{p(n)) = sofpin)) are the intepral curves of the vector-fields Z"!Zi =

n-1 : F
MAx on § 7. These vector-fields are orthogonal because
i

s
W
I

£
CAx AxT=ah w A AN
i j i 1

- Sx, A A N>
i




Libl=

and <X.,.X. >*

< _%_A_x,.ﬁ-.zx Pza Ab x>
i TEE]

=
L

Thercfore = E'L_.‘,}:'.j =0 (i # j).

Proposition:  The Lie algebra generaled by the infinitesimal transfor-

mations al the ve:tt:-r_:f'lel-ds .'.!{i = ﬂi}.: is isomorphic to ao(pin)).

m .
Proof: The vector-field X, = ﬁ.i:q is dq_:finudz by E Al ﬂi where
= i I

r =
i i
= Fi i El EL:t*.E K'E

I

The Lic-bracket [}:i,}{-i] ia

3 EIAls i aAqu a
X,X.]= a7 — - a = —
[ L j-I v dx robx . dx
x r T 8

= Z{4 A 3
{ i J}]‘-E =)
because of the relation ﬁiﬂj e Ajﬁi (i # j).
generated by the elemments A_,..., 4
prire] ] pinl

- e
the subspace ME. = < .-"‘l.iJ":-.~ > (i#j] of dimension 'E‘T'—En"l (pin) - 1) is iso-
g .

In the Clifford algebra C

morphic to soiplnl).
We apply this result to the integrability of the distribution of the

=1
O Sn lexistence of suhmanifalds

} rctor-fields X ,...,X
pin} veckor elds K . oin)
{n) -1 . :
mP of S » auch that in each point x e Mpl:n], TH_I::VEPI:H]] E }{1, aobia
i = 1. The & ibior r integrabili it
n) 1 e condition for integrability is
: (o 3
e ] g e Fahna | T
{ il- J} 'f- ;‘:11 h:i |_|'|] -|'i ,]

Bince [Ki. }{j] = 2[4’1i£LjIxJ the condition is satisfied in the case of the

: - Zn=1,_1 dn-1,_3 1 3
Hopf-fibrations 3 - fS and 5 2 {3, the fibers {5 and 57) defining

the tangent submanifolds of the distribution. In the general case, the




I. -1z~

|
: quotienlk space

I s~ . g%l rspintping)

: ¥ .n-1 o : : i

I induces on S a foliation with singularities. The set E of singularities
A

is given by

el Em“il(ﬁ 5 .ﬁ.,ﬁhj:—c - D]

| ik ik 1
: - I - 2L he o -
and in the complement 5 - Z, we obtain 2 foliation, given by a covering

{u,, f1 of 87 % such that the coordinate transformations

are decomposcd as

1 &
[, %) = th, {x), h, (v}
ij ij

H 1
l e T 7 b= 47 )
i 1 j s j
|

n-pinl

g" —m'm g

The fibers are the intepral manifelds of the given distribution }Cl, o i K‘TII:I"]I

4. Applications

guadratic form

H -2
PR aij P,

L
I The Hamiltonian™ of the n-dimensional harmonic cscillator iz a
r" in the conjugate guantities p,,q. and the set of observables which are
o
gquadratic expressions in these variables is the Lie algebra of the sym-

plectic group Spin,B). The maximal compact subgroup SUln) = Spin, BIn

SO{En) of Spin,IE) is given by the set of elements commuling with the

Harmiltonian

- n
' .El (p.p, +9,a,)




-1%-

in the quolient space Spin,E)/U(n}, the relalion between the conjugate

guantities p,q is given by the complex structure of }-,iN = Epln, B}/ Uln),

1{ntl)f 2
imbedded in &2 (hapter 2).

We introduce the complex coordinates

nintl)

(k=1,...,N==2

k k il

™ g
and the tangent space T.:m‘ I of the open submanifold A has the basis

Bps A o vih
] RN 3 ::| .
CE 9" By

The complex structure is defined by the endomorphism

J
T TiMN:' — T[Mh]

o ) SR o
where JiE—] == Ja.Tl.rJ'—- .
i, gy iy, £

i} 1 1 1

The connection of the complex structure J with the invariant metric on:
Spin, BL)/ U {n) [chapber 2] is: a) the cndunir_:-rpj'_is;rn J 4% an isometry of
the tangent space; b) J is invariant under parallsl trans]..a',_;i_un,‘i The fal-

lowing stability-property leads to the peometrical quantization for the har-

monic esceillator by intreducing the complex structure J in the phase space.
The space FH{Spi{n, )/U{n)} of helomorphic functions on the symmetric

' _ . - . :
space M is an invariant irreducible subspace of the action of Spin, B).
We conslruct an orthonormal basis of H(Spin, B )/U{n)); the Silov boundary
S(Spin, BL )/ U {n)} is the manifold of all symmetric malrices of order n.
Let 5 e Z (Bpln, B)/Un}); we consider the elements 5"] of the matrix S

n{n+l) /2

as the components of a vector 5 ¢ @ Let U be an unitary matrix

and

T = USU!' e X (Spin, BT {n))
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The matrix U induces therefore a linecar transformation

nirntl} nirntl)
e S

5 =ulsh =t

nia+] fl,"}E]

f
lLet P(C be the apace of homopgenesus polynomials of depree

f inm the variables {s_}. U induces a linear transformation
1]
L
, nintl) , ni{n+l)

[
T.]r: ?[[EI A )—*'.F‘E Q‘L“. z )

The basis of the invariant subspaces of U give an orthonormal syatem

: Z
in the space L [EZ{5pin,B)/U{n})} of square integrable functions on the

Silow ]:--mmdar:.r. As a consequence of the izsomelry

L% (=(Sptn, B)/U(n))} - HIE (@)
- -, = £z )
fiw ] j'- Pnfa,xvﬁ;lv bl

1 1’1{:1.I:E—:.-'.:.-'.T'I-n

where Plll:z,w:l = 5
del{an-w) =

- T - o n, .
we oblzin an orthonormal basis on H{B ()]

B ermark 1:

BT e ™ e

Let 5Ufln, p] be an extension of the maximal compact subgroup

EUn) of Spin,M). The homogeneous space SU(n, p)/3U0in,p - 1) is

1+
realized in @ © by the hyperboloid e E

n o

E?.,E;—E‘ : o 1

W ) “ntk “ntk

el

The Liec-algebra of invariant vecter fields on H *P 42 a aubalgebra af

suin, p) where




[,r'ﬂl A A= - g'!u], :’i} = - .|'"|.3

(Y]
-~
=

—_— e

suin, p) | ) .
T —
‘|\l'-.e"!|.:{ .|':'|.3 Tr[;’al:l + 11'|:_-'"|.3} =0 |

The following curves define trajectories of the acktion of 5U{n, p)

on Hn’ P

[’s[tll_d nlt [ 5] sy 2
L with T2 - Zh =1
{z[]—h & k=1, vissp) ;

In the case p =1, a symplectic structure (with linear action of Spin, BE)
on the tangent space) 1s defined by the fundamental form E f':'aj Aocf
= j

where

o
ST A

E;;-.a:r:{ 2t

Ome can apply the preceding construction of an orthonormal svys-
term in the syimmetric space of the symplectic group to the ensembles
of hermitian matrices considered by U}'Eunﬂ in "Alpebraic structare of
symmetry groups and ensembles in guantum mechanics., "

let I‘-fu’.‘ll:]:".L he the set of matrices of order n with coefficients
ir1 the fiald F (either B, & or H); we congider subseata of Mnn:F'] 1r=

._. b

’ : n
variant under the action of 2 grouwp & operating in F by the repre-

sentation:

pi G — GL{F"

Dyson studiecs the bwo cases of invariance:

)N (F) = - {5 e M_{F}|Spla} = ple)s Ve e G}

The matrices are Lhen called formally invariant.




=16=

b} ME(FJ ={Se I'»rEn[F] Spiu} = plu)s, if p{e) unitary
; Ay S et
|Spla)l = plalS3 ", il pla) antiunitary
Then the matrices are called physically invariant; the two definitions
are equivalent if the matrices 5 are hermikian.

Dyson obtains the classification resualt:

Theaorem: Andrreducible sel of matrices in M (F), invariant under
£k A f

LG in the physical sense is the set of all seli-deal matrices in F. In

the case of an unilary representation, the set of matrices invariant

under G, is an orthogonal, unitary or symplectic group.

The ensembles of matrices formally invariant under G are the
group-manifolds SCinl, 5Uin), and E}':-I:n,m.] with the probability distri-
buticn induced by the Haar-measure on this group; fer the symplectic
group we apply the construction of the invariant metric on Spin, B)/in)
(chapter 2). The volume clement

[ e o

&,
Lj
induces by the canonical projection

i: Spin,B) = Spin, B1/U(n)

the Haar-measure on Spin, B), uniquely defined up to a multiplicative

conslanl,




)y
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INTRODUC TION
The mathematical structure and the physical interpretation of the
conformal group, invariance group of Maxwell equations, are studied in this

-

&
paper, &s a detailed analysis of oar publication  which has been the object
13,14,17

of several papers,
The first part gives the structure of the conformal group in a metric of
signature (p, g} and a proof of the relation between the conformal greup and
the isometry group of 2 compact manifold.

In the Minkowski metric (n=1, 1], we construct the bounded realiza-
tion D' " of the symmetric space of the conformal group, the unbounded

: n g i
realization being the complex light cone T = B + 1V where

&
n

¥}

2
1"r _{}-Emnlyl}c' }I'g-___-'}' }r}}

This explicit construction allows to defline the Bergman metric, the invariant
differential cperators and their elementary solutions (Green functions) in
the bounded realization Dn of S0(n, 2) /80(n] ¥ 50(2). Their domain of
definition is the Cartesian product of D" with the Silow boundary Q" we
prove thac Q" is the guotient space CI:]:-.'inll {PIM™) of the conformal group
by the FPoincaré group P.:Mn] and give severzl applications (representations
of l.'_'.-I:Mn] induced by P(M ), eigenvalues of Casimir operators in the Lie
algebra of G(M'}).

The construction of the Green functions in D is extended to the
non=scalar case (tensor- and spiner-fields) and the value of the structure
constant a is obtzined as coefficient of the Green function of the Dirac

: ; 3
eguation in v .
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1. The Structure of the Conformal Group

A conformal mapping M~ M afa pseudo-Riemannian manifold
M with metric tenser Elj iz a differentiable homeomorphism of M which

leaves invariant the isctropic conea:

n
dsd = Z B de dxd = 0

1,7=1 1]
T 2
If we introduce the induced map f* for tensors on I'-':[FJ, then [?El:gi_j:l = h gij'
1
where L # 0. The confarmal group Cn:!'-.-{] ] is the group of these transforma-

5 : : - I c : . . -
tiong, and is an extension of the group I{M ) of isometries, which keep the

metric tensor g invariant,
t]

Example 1;
Let MP'Y be the generalized Minkowski space with the metric of

2 2 . 2

signature (p, gl dsi = I:EJ-;[ Fonarint d:'LP = dx - . =dx (where pg # 0],

ptl Bty
',

The isometry group I[MP' I:]] is the Poincaré group P(M¥ semi-direct

product of the group of translations TP 9 and of the generalized Lorentsz-

group:
= p+q T
SO(p, A M E)| A E A=
pa) = {AeMTUAR} ATE ol
where q L
T — H3
xF = 5 I
-1
¥
0 sy it

M™% s an homegeneous space of the Poincaré group

P[I-.{F' I:!] ; the isoctropy growp of this action is 50(p, q) and therefore

MY o o Y/ s00p ).

The following transformations of C[I-.-IP' q] are not contained in

Pl Iy

'




- i = By AE B BN e

1, the dilatation Dia,h)of center a and factor h:

x, = kix, - a,l
1 1 1

2, the inversion I{b) of center b:
X, - bs
®, - -
; N, B
where
2 2 il z
Bl R e R SR L e
M=, b) (%) - By ixp EJ} ixpﬂ - { pra” pig

The inverczion I(b) iz 2 differentiable homeomeorphism in the complement
Mp’ 1 C(b) of the isotropic cone Cl(b) of center b.

Accaording to Liouville's theorem, the conformal transformations are
obtained by compesition of the rotations, translations, dilatations, and in-
veraions. In order to obtain the structure of the Lie-group ':I:Mprq':la we

introduce the geometry of epherecs in the Minkowski space M

Thearem:

The set Sip, g} of 2]l hyperboloids in ]'-.-IP'{1 iz an homopencous space

of the group E{}-.{P' Ty of this geometry, which is isomorphic to the group

Ept+a, q+l).

Froot:

15
The proof ia a generalization of

the equation of an hyperbaoleid in MPr e ig

P
A
:-:2-.-.1:-::2—}{2' L A T —'lz :-c..-ai+b'—|}.
i=1 -

)




The radius t is piven by

Z 2 2 2 £
r _.=_1-I--..I-a = R + b

and the introduction of homogeneous coordinates

£, S £
gi e T “—L----P"'CI_] b= g—.ﬂqﬂ T = E]ME
; Epaq-u-s ptatd pats
gives, after a linear transformation
2 2 2 2 2 L 2 2
£ 4 . - = = 4+ 4 - =
el E']: 'E'p+1 ] E‘p+q ' ip-l-ql-l ! Sprat Ep-l-q+3

The linear group of this form is S30{p+2, g+l).
We pgive the relation between the conformal group &nd the group

n=1,
of the geometry of spheres; let M £

be the pseudo-riemannian space

. - P g . : } 2
irmbedded in M° by x, = 0. We asszociate to each isotropic cone da = 0
of center x in ME" 9 the hyperboloid, intersection of this cone with the
hyperplane ) = 0, This isolropic projection from the set Clp, q) of iso-

: » . :
tropic cones in mME q, homogeneous apace under the action of the conformal

1 g

group C(MP’ q:l. inta the zet S{p-1, q) of spheres in M?‘ induces amn

1 _ll
isomorphism of the conformal group ':[MF q] with the group SI:MP q] =

SO{p+l, g+l}.

Example Z;

In order to illustrate the difference of structure with the preceding
construction, we study the conformal group CI:MH:I of a compact riemannian
manifold M- and we prove that, with the exception of the homology sphere,
C[t-.-]'_:"] ig isomorphic to the group L{]‘-.-'in]l of isomelbries; we give a new
praaf of the following theorem, more in line with the representation theory

of groups.

mE n S S ..




Theorem:

1f the conformal group l:{}'.-in] af & compact manifold M is not

isomorphic to the group I(M | of isometries, then the Betti numbers

n E ! oo f ;
b (M), dimensione of the homology groups af M, are mero ijor

p=1 a0 n=-1

FProof:
: 3 n i
Let g.. be the riemannian melbric on MM ; we define the Laplace
operator in the space of p=forms and representations of the groups G(I:-.-{nj

and 1|:I'.-1n:| in Lhe apaces of harmonic forms: the diffevential da of a p-form

i i 1 i
Tl _ " 1 +
a = ai : d}r.ln..,,n dx? 0 .-“-.p-,‘i'-.-i‘l‘,n ig given by |,-chat‘,-.L - dx n...ndxp l?
1S 1]: i.l i ! I' " " p+l

the cadifferential a = (da). ‘ dx AL . adx P~ with {&a). 5 =

T Fo fieadoy

1 p-1 1 p-1
= -:L-J.:-:-L'ﬂ-'-m-l-1 (v d = al, : wheare #a is the adjoint of a .

i g

The Laplace operator is then defined by

A<ds +6d . AP = APMT

and the space IIP{M“] of harmonic p=forms as

H (MY = {ae APM") | 4a=07}.

jul

-

According to Z[L:rdg&-l:]'ua::-?urn.i:I the dimension of I—I_JIII-.-III'] is given by the p-th
Betti-number bgimnj. Or the other hand, because of the invariance of the

Laplace eguation Sa = 0 in the operation of the conformal group IC:(MHJ and
of the lsometry group I[I-.-:[r":l. we obtain representations of degree hp['r-.-'[n} of

these groups:

B - oM™ — l::-I,HDiM“:
CiM™) :

g - Rig)




_B—
; -1

with Rig) (al{x)) = alg (x))

for o ¢ I-EPI:MH:I and x ¢ Mn.

and the same formula for the induced representation of I{MH}C{ZﬂMﬁ], If
rn
there exists an element ge C{M }, not contained in Il;Mn:l, with
z , b : -
gig..) = »" g . {» #1) then there is ne harmeonic form of degree
ij ij
P 0 < p < n, except the trivial one, and thereiore b.L{l'-.-'In} = 0 for

=l eyl

Thiz method of demoenstration leads us to the study of invariant differentizl
n : . .

operators and the representations of C(M ) in their spaces of solutions, in

the case lf:[]'-.{n} # I_l:Mn], as considered in the example of the generalized

Minkowskl space,

2, The Bounded Realisation of the Complex Light Cone.

Let TP = mFt9 41 vP' Y (pg = 0) with

Pa _ pra 2 Bl SRR e S
W = {ye B L8] +.o. 4 Y[;: ",.FF_H 4 l!'rpl-q oo}
= | e L
0 i

be the complex cone associated Lo the metric of signature (p, q); this domain
: : 2
of ©F 1 has the complex structure of the imbedding T 9 o P The

group operating transitively on TH q, generated by the translations on the

real part R]H-q. the rotations leaving vF' 1 ipvariant and the inversions
&,
2 i
i & 2
0 O e RS- AR S T
1 I 2 ptg




e

iz, according to the results of the first section, isomorphic to S0{p+l, g+l).

: B ; : . i+ I +
Cuar aim is to construct a bounded realization of the space T 2 in P q]

P E + i :
this means an holomorphic map I ; TF Lo &F" cuch that _‘t-'iff['pl q:l i8
: ) oq . _ o,
contained in & sphere of ©° and such that F commutes with the group

operation on e S T apply the theorem of E. Cartan which shows the

£
special structure of the conformal group in a space M of signature (n-1, 1).

Theoraerm:

™9 . EPT{l + i v 4 Zdmite a bounded reali-

_T_he tubular damain

sation if and only if g = L

The construction is divided into & parts:
al  the bounded realisation of the symmetric space D" = SQ(n, 2)/ 50(n) X50(2)
k) the holomeorphic map F T - T

a) We consider an homogeneous space of the linear action of the group

SO(n, 2) in the complex projective space Pn+¢'{E} , namely the hyperbeoleoid

H = {xe P () | = E x=0 }

o, & n+ 2

. ; o Aty 3 '.
and conatruct a stereopraphic projection” irom F .?['3;] in G such that
z nT &
the linear operation of 5C(n, £) on 1-11 , is transformed into 2 group of
Il &

: : _ f
homographic tranaformations of & bounded domain of @O .

We introduce the non-homogeneous coordinates

= -1 f
T, Ayt ol Rl
=]
Sk . o)
EE '}Ln+J. + 1 ;-c.rH_E} {xi i :u;z]
-1 ; ]
: = o <y =
dj I:M“:'|+] y J{:t'.-I-E,:I xj 2=l




— 1=

The subset En af the hyperboleid H given by the ineguality

+ & n, 2’
;: E Ep_1 5 ¥ » 0 is transformed into the bounded domain of 1I:.n
I : n
L+|Z z.zl 3 -?.E zE. = 0

i=1 AR T I

i
| Z zz | < 1

=1 L i

The isotropy group of the linear action of 50(n, 2) on the subset En 2 af

H is 50(n) = S0(Z); the mapping 5: - Dn given by the preceding

n, &

n, #

formulas induces an isomorphism

S_ : 50(n,2} — A(D")

of the group 50in, 2) onto the group A{.Eln] of helemorphic transformations
I -
af I : therefore

D" = 50(n, 2) / 50(n) ® 50(2).

B} We construct in the second part of the proof the holomorphic mapping

n r 3 R : : m., '
F:D - T = HEB +iV of the bounded realisation I in the complex light
COTLE Tn.

Let & : En T l'jln be the stereographic projection constructed in a): by a

linear transformation of variables, the equation of the subset En 3 of the

h boloid H peco ]
yperbolo ain SLECOIIES

whers




< b=

We introduce the coordinates (with y # 0]

- - _1 T _:_
=1l \"rl 1'rr.*.-.Jl'

The eguations of E,«. 5 imply:
S

Z

=
= T 77 1 e e = 0,
: £

2

I:_1rn;5flE = {Im =

1
If we consider the connected component Im 2 > 0 oof this sel, we oblain the

X BT n, & n
complex light cone T = B + iV andthemap T:Z e B

1

The compeosition-map F= T St T gives therefore the holomorphic

transformation of T in a bounded domain of " with the praperty:  the
mapping F : D" = T induces an isomorphism F_ : I{z} — LIT™) of the
izsotropy group I{z) of a point = {on the boundary of I:lr'] with the proup Lrl:Tn:'
of linear transformations of T , isomorphic to the Poincard group P(M)

n : : : 3
a linear tranaformation of T° leaves invariant a point with the homogeneous

; n
coordinates ¥ £ 0, ;.-j = 0(j=2 ..., n} which is a boundary point of D .

The explicit form of the bounded realisation allsws to compute the functional

; mn rn ) ; -

determinant af the transformation F : D = T and the non-linear action of
n 10,12

S0{n, &) on D i the Jaccbian is obtained from the invariance condition

il 3 : 1 y n
on the domain T, the only polynomial invariant under the linear action of FidM )

k ) :
being izl- zi-. i -"...".E:I : the dimension implies k=n. The explicit computation
5 3% 2Es n 2 2 =1k
of the functional matrix gives the Jacolaan — = 2= 1 .. —melie " Forthe
F."-;h__ Eh_.rk 1 T

action of a group element A ¢ 50{n, &) on 0", induced from the linear action on the

5 L
CE (), we decompose the matrix A with (n+2] rows

hyperboloid En, > s

and (n+2) colermns in the following way:




.

A A
A = - -
’P"3 'qll-
where the matrices _-ﬂ._i (i=l, ..., 4) are respectively 2 X &, n ¥ 2, 2 X n and
nXn, Then the map
ef 4
Aoz — Al=)

is given by:
T 1 o
i, 22+ 1Y N e IS Gzl ra 8
Vel k";{zz' =1 2 iy ij ifze' - 1) z ]
The image in the map F : D - "_['YL of the real part I:En, {0}) of the complex

light cone ™= ®m" +iv" is given by

LET - z SR
2 = [E—xl: £ O ;!-:—[:n»r......:-L]_L:I.:-:l+...-|}.::1 lj

: z : H
and the isotropy group 30{n] ® 50(2) of an interior point of I operates
transitively on l:ln, cartesian product of two apheres of ditmension n=1 and

n ; rt £y
1. The aubszet O [(Silov boundary) of the topologiczal boundary 3D of D
is also an homogensons apace of the action of 50(n, £) with isotropy group

i
F{M "} [chapter T)
BEemark:
: 1 T ey ool
In the case n =4, the complex light-cone T =B +1iV hasa

special bounded realisation in 2 space of matrices. MNamely, the Lie algebra

of the conformal group 5004, 2) is isomorphic to the Lie algebra of the group

512, 2) associated to the hermitian form




SE
Therefore, the bounded realisation is & domain of the first type in the
classification of E, Cartan.

A =
DE'_' = {ze I'-'IE{II:!I | EE—sz- = 0 }

iwhere the symbel A = [ for a symmetric matrix means that the associated

form is positive-definite) and the action of the group of automorphismas

_—T
e = .’. ~ =,
SU(Z, 2) {Me M (T) ‘ Nl B Mg ]

-1 . L B
ig given by z = (Az + B)(Cz+ D) with the decormpesition M :<G D)

n
3. Construction of the Metric Tensar on I

: & 41 :
The bounded realisation D of the symmetric space 50(n, 2) /SO(2)
n - n . :
in @, given in the previcus chapter, allows us to define on D an invariant
metric tensor : we give in this section an explicit censtruction of this
: e : ; rn 10
metric, which we apply to the Green function on I .. Let ‘-fij aned g be
1 XS Ty j n
the metric tensors on T = B + iV and Dn; the mapping F: Dv — T
Fives
(v, .} ( = J(F) ‘ g..l
| 1] 1)
P -1 ~
where J(F) = (1+ | zx' | =2z z') B it the Jacobian of F. Because of the
: n
pseudo-euclidean atructure of the metric on T, we cbtain for the invariant
r
volume element on I

| Bi] | = el + |=z=2' |1— zzz' )0

where ¢ 15 a conatant factor,
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Remarks:

1.

43

This forrmula can be obtained by using the fact that the action of 50(n, 2)
on Dn: given in the previous section, leaves invariant the boundary of

o _
n", defined by the polynomial eguation 1+ |zz'| - Z2zz' = 0, Therefore

S X 2 - M
Ehe invariant volume elaerment has the form 1_g_lJ| = cll+ |:z:z'| e

=
An analytic construction of the invariant volume element is given by the
Bergman kernel. Let g:'ll:af-], qi'zl:'-'-ll. «vo beap orthenormal basis in the

Hilbert apace H[Dn:l of holomorphic functions on Dn. with the scalar

: . - 20
product induced by the euclidean measure on B ; the series

6o

];Z-l &l}{z] r.:l[Jlfz]- converzes uniformly on each closed subset of the
Cartesian product Dn i Dn and defines an holomorphic function Kz, ;.:I
independent of the cheice of basis in iiiDn]: we have the following

transformation law:

Fropasition:

Let g:z—*gz be the ma‘:}ping of D“ given EJE ge SO(n, 2), then

i =R i
Kiz, z) = Kigz, gzlljgimll :
Praoi:
The seguence ﬁ.?]ig'f-}. L :,Pp[gz] does not give an orthonormal basis

; n ; " : ; !
in H{I?) hecause the euclidean velume element is not invariant in the

action of SC(n, 2} ; but fqﬁp{gzj _ig{z.ll } is orthenermal because

n
ﬂpq = "IDII- qppl,“z.:l -:;ﬁ'D_I:E-:I l_.'zl dzi_ dz_l
7 e
= egtea) e tm2 1T T dzy

Lr i=1




3)

=15

The surm of the series Lcsp[r.} :_.*.IP[;:} is independent of the baasis and we

ohtain the transformation law
Kz z) = Lolgzle (22} j (215 () = |i(a)]|° Kigz o).
I g g2 B g
Simce the Bergman kernel Kz, z) and the volume element |j.-;_1J| hawve the

game transformation law in the action of 50(n, 2], they differ only by a

constant proportionality factor

E{l{:."-,;} E Ellgijl =i 1+ |z=z

n
This factor <y is given by the euclidean volume V(D | of the bounded

I

m 5 -
in the case k= 0 of the formuala.

i n
domain I, equal to =
=t )
.

n n ;
T - .k = 1'|' I'{xt1) 1
(1+ |zz'|” - 222"} “ dz dz = -
%.—; | |r | ZE | i_,] | i .-?.n_l T(h+n) [ZW4m)
16,17 : ;
In we apply a different transformation formala

Glz) = Gleiz)) |j (2) [z

which i associated to the valume element of the Riemannian atructure

-1 -
-!_'Jl:z]E = cHKiz, 2]

- —_— Z
The transformation law is & conseqguence of the formula Kiz, z ) = Klgz, g=) ] _

=

and of the relation

8 " ERCEEE 1
[ul | “n ?n}
| |::|{1, Y]. S g j{-l".l }rn':'

gl

2
|Jg¢13| =

w |

P i
2 and the real
E'l:zl. Sy 3:‘:]

hetween the complex Jacobian jglfi:l =

Jacobian of the transformation z = g{=z).
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The invariant metric tensor g,. is defined by
1]

A
g, = i In 1+ |22']° - 252"

bw, Az,
1 ]

We compute g, explicitly, in order to apply it to the induced metric
1]

of the imbedding i: D" = D" givenby z_= 0. We obtain:

& e _ : " ; il
B, 5 ~MTs (E'Ej in [lviEakzk}{Ezfzf]— EL?‘PIF])

2z =z =z} - 22, )
i ke i

1+ |:.:-z’|2- Zzmz'

il
1
=
=
= o
-
ﬂ

}: r = ol = ==y
o = Z E = - = - = :
1+ [22!]"- 223")(z3,-8,) - (2(B=y =) - 22,) (22, T 2, 2, - 22;]

2n

I 2 2
1+ |z2'|” = 2=z=')

= n o c
The inclusion map 1: o S D" given by the restriction [zL, N

n=1

n 5
{zl, R A 1) induces a metric I_*ig__:l on I and we obtain, according
= 1]

to the previcus formula

() 85l2pr - e+ %))

I:g :.z PR Em & .:I ] — — — —_— et ] - — b —
bea 1 - i :1+ |x?‘|5‘r.zzz|
o =l .., I - :

=] n
In particular, the volume elements on D C D are related by
I
s

faaieieine, | e ) = lg..l:.i!-.....z_:l‘
T TR | n g [nnljnl | ®ijT 1 n-1
n

4, TUnitary Representations of the Conformal Group (Discrete Series).

The previous construction of the invariant metric leads to a scalar
n ; . L e
product in the space H(D ) of holomorphic functions on I¥ which is

invariant in the discrete series of Tepreséntationa.




Sk =

For any integer p, we construct the representation

R : 50(n2) = GL{H(D"
F
~ R_(g) f(z) = fig"z) j (=)
E Bh - g
whernjg{z] i the Jacobian of the mapping g: 2 ~ g=.
In order to define the invariant scalar product, we apply the transforma-
ticn formula of the volume element |g1___.|, praportional to the Bergman
J

kernel {see Chapter 3):

|g..tzd] = |e. .lg=z)| - |i (=) E

1l x 1] 4 3

Therefore the scalar product

Rt

i L Am
1 E;p = J-n E][ﬁ] fz[z] K (s z) ds ... dz

1
5] 5
ig invariant in the transformation Rp[g] and the representation

RP:EG{n.E] - GJ_.(I—l[Dn}] ie unitary because:

- -]. Ly =1 -1 = - !EEJ -
-:;RP(E}. fll REJI'E':IEE :i:’ = J-,_—:,“ fl[g z) .8 ) K I:_g-r._.g;:-:]|_1£{2.:|: dzl---dr_n
— A P K Flz, z) d= ... dz
i1 2 1 £
N
= -
2 ﬂf fl P
Lk :,pl[x.], S g.t-k-{z], ... be an orthonormal basis of HI:I_:;:“ iwith the

2
measare induced by the suclidean structure; then {tPH{z.] K } is an

orthonormal baszis in the scalar product < fl' {:, }1:' . The matrix of the

operator Rtjl:[__r_] is given by
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w
i
1]

< Ruigl *Fh{ﬁ]- e;f-j[r-] >

-1 i =: —
_Jrqpk[!_g_ =) mf[:ﬂ K Ptz,zﬁjg[z} |—|_ cli:_jL di:i
]
D

. 1 ki
According ta the result of Bargmann, the coefficients ap {g) of the

representation RP are square integrahle on the group manifold 50(n, 2]

2
ki
a p(gj! dg = @

|

S0in,2)
dg being the invariant measuare on 50(n,2). This property is character-
istic of the discrete series of holomorphic representations of 50(n, 2],
according to the resualt,
Theorem:

Let R:50(p, g) — U{H) be a unitary representation of the group

SO(p,q) (with pg #0) in an Hilbert space H, If the coefficients

‘lRI;g:Ig.:liJ 4_13:{ = of the representation B, where r,:ri is an orthornal baais

of H, are sguare integrable on 50(p, g), then p= Zor g= Zand R is

equivalent Lo & representation of the discrete series.

: : r £
5. Elementary Sclutions of the Laplace OUperators in M and D

gt by e Th . : .
The holomorphic map F: D — T, censtructed in sectien 2, gives

: - : ] I by}
the following relation between the Green functions on D and MM,

Let I:Il ) be the Laplace goperator in M and H_1 oy the space of

harmanic functions;

Hl,n—i_{{ﬂ_n p P=01}

I, m-
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The invariance of the equation [J @ = 0in the action of the conformal

I, n-

Eroup G[Mn] = SMn+ 2, 2] induces & representation of 5000, 2)

Rn : S0(n, 2) ~ GLI:IIL] |

1-1

g =R (g): ofx) = i 1]

- We construct first the elementary sclution E  of |:|1 i which satisfies
, L

n

g - ; ; p 1
E]l 3 1ErJ = &, in the case n= 2k, To the Dirac distribution o (x) in &

corresponds by the mapping:

f:M -~ R
[xn,--..xn] = d=}-:f'-...-}:i
the distribution Hie) = { {&(e}] with
supp (Hiel) = {[?"-1: -!fn,"if'l: ok

In the same way, to the derivative of order p of iflE corresponds by the

mapping £ : ]'-.-'En'- B a distribution HI:P}I:EL
5
The elementary salution E*‘u of |_'_‘|] S is given by ;
' ; n-4
o e g SR iy T2
n R £
2 g o= 0
(4w} n-2&
y ; ; & T :
Let us consider the holomerphic function izl Bl i 51 | in the complex
: n TR ATy ; : il =} p :
light cone T =K + iV and its symmetric T assaciated to the cone
n{-) n 2z 2 Z
= . i = a = 0, < 0 ;
¥ e B | o ¥ i S }
the boundary values are defined by
n- & =&
- f— - )
i 2 & ) ) ) Fl Z ]
i = e i = li + - - .. =3 ]
Ii[:ht1 + 1) X :cn) lim (I:xl I.E.l] [12 x| )

~0
|
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; n
The difference of the boundary values in the complex light cone V

and ite aymmetric '-.-’nl:_} gives an elementary solution of the wave equation
=2 -
z & 2y 2 L e ey 2y 2
= 1 0)" - == - -10) - =i =
! |‘—‘ll., n=1 ({x] ] IJ. xn ) ({xl ! P *n

We apply now the mapping defined in section &,

L} In

F:T" = BE+ivh = D" = SO(n, 2]} /SO(n) X SO(2)

which induces an isomorphism

n
F* ; Il:zﬂ} 2 P{hi )

: : Tu
of the isotropy group of & point 2, of the boundary of D with the group
n . . n
B{rM ) of linear transformations of T .
This gives the relation between the Laplace operators on M oand D
and thereficre between the elementary solutions of theae operators.

Theaorerm:

The image of the invariant operator [ of the mapping

1, m-1

I " . A n
F:D —= T isthe Laplace operator of the invariant metric on I .

7
We apply the following result to the group G = 30(n,2}; let G be
a connected semi simple Lie group with Lie algebra jr and invariant form B,

The differential operator £ g X X [(wheare {Kl} is a basis of gf’ and
il L ]

gij - E-I:]{i, ]-’._J}]. called the Casimir operator of G, corresponds in the

mapping & — G/K of G on its symmetric space G/H to the invariant
Laplace cperator on G/E. The Casimir cperator of the Poincard group is

therefore the wave operator [ and the Casimir operator of 50(n, 2)

1, n=1



=2]=
is the Laplace operator

A i o a)
o ll\%: I:i Bk ]

Ei:-:k_ 3:.-:..1

g

of the invariant metric {gi;] defined on ]:}:'I = 80(n, 2) f 80(n) X50(2) in

F

gection 4. The result follows now from the property for the map

n n ; 5 : - n
F:D = T of inducing the isomorphism [{z) 2 P(M ). Therefore
10 |:|1 s ]] = A, A corollary of this result is the relation induced by
F of the elementary solutions of the wave operator D1 i and of the
Laplace operator on D = S0(n, 2] /50(n) K50(2). We construct now the
Green function of &0 in chapter 2, we have obtained that the image in the

mapping F : Tn - Dn af the subset of

o G r
T {2=xtiv | xec B . v ".-’n}

defined by v = 0 is the Silov boundary

0. = [E_xelelz :-r..:d:l}

£ " LT i

contained in the topological boundary of D", and invariant in the action
af the group 5000, 2).

Q" is homecomorphic to the cartesian product of the two spheres
Sﬂ-l and .‘;i.l and has therefore a measure dg invariant under the action
af 8Q(n) x 3M2), defined by the tensor product of the riemannian
MmEeaSUres on Sn-—] and 51.

Q" has the following properties, characteristic of the Silov
boundary,
a) Let fiz) be an holomorphic function in D" such that its absolute

ot n 3 :
value |flfz]'| is bounded on the closure D7 then the maximum in

n
D of |fiz}]| is reached on (558
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I r i
b} Let ge¢ £ be an arbitrary point of the S5ilev boundary; then there exists

an holomorphic function £(z) in D" such that ]'-.-'1:1:|;| S | iz reached on Ci!n.
we DT

Therefere, [or any helomorphic function [{z) on 0", we have

flz) = [ &) dgq (£)
Q" :
where -:'tu_E iz the measure oan o, invariant under the action of the isotropy
group of =z, isomorphic to 5C{n) * 50{2). For the complex light cone Mo

1 P - : =
the relation ! between the values of an holomarphic function on the Silov

boundary and in T Qs

1 r fip) <k, k= ::l]_::-l. Yo dpn

i{kl + “‘-3:'

I

{ 2 pbey
[tk -pyll - W)™ + 4<k)-p), k> ]

il STk

where the scalar product < kl, kz > is given by the Minkowski metric
and .ﬁ.{Sn_l] ig the area of the (n-1) dimensional unit-sphere.
In the transformation ¥ :Dn - Tn. the image of an holormorphic

function is holomorphic (since F is analytic) and the Silov boundary En

I . - 4]
of T is transformed in &

=) = [ HE) P _(z4) &

Il

]

where the Poisson kernel 'F"n (z, &) is given by

n
L : e
l:,r:ﬂnj]a Bl el S e
Pni'a'u%} = =
vig™ |[(z-8)lz-£)

-1
the measure V{Q ) of the Silov boundary being ( FII-IEL]) Zn
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Progi:

& :
the Maehlerian structure of the metric J'i'nz L—"q[z,, £l = (.

T

0,

to 50 n) X 50(2).

B emma rh

It

- - ; 0 :
orthonermal hasis {'c.':'.tlf:r-:l} in the Hilbert space H(D )} of holomorphic
: n
funetions on Do

According to chapter 3, Kﬂ(z., w) = Z w (2] ¢ (w) ; the sequence
I ¥ ¥

=

! |:|.i_E qppI:E] I where

: ; A n - . .
ig orthoenormal in the Hilbert space L?lfﬂ ) and the Poiszson kernel is given

by the guotient of series

B,  Special Properties of the Elementary Solutions in D'n even).

invariant under the action of the isctropy group of the point z, isomorphic

- -l] 2 - - ' 1
K lz,2) = 1""[-1:'11:' (1+ |z2'|” - 2z " is the following: we introduce an

Pn[x.ﬁ} ig an harmonic function of =

P iz £) iz an holomerphic function of = and as a conseguence of
n

; : : n
By construction, P (z,£) is (as function of £ ¢ ) a measure on
n

The relation of the Poisson kernel I—‘n{z. £) with the Bergman kernel
o
¥z

jr @ () o (8) dE = a

oM

=1
|Z o i) wjﬂihl

F (z,£) = v
n z uiq::'ilfz:l -;.}Jﬁz:l

=5

n-1 1 1 id = .
gk e [ « vl L= xe . xx' =1} has the following property:

The Silov boundary of D" = 50(n,2) / 50(n) x S0(2), given by
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Theorem:

E}n ig 2 complex manifold if and only if n is even, In this case, the

gomplex atructure is invariant in the transitive action of the groups

S0n) = 5002) and 50w, 2},
Proof:
For n ewven, the structure of complex manifold is given by the identi-
ficaticn map
M - M /T
where M" = ©" - [0} and I' is the discrete group of helomorphic trans-
F I T g
formations of M generated by the map {: @& -{0} — & -{0}
Ca - 2E,
i i
This group acts freely on M and therefore its quotient space is 8 complex
] ; 9 f=] 1
manifold, isomorphic to 5 X5,
For n=z 2k+ 1, the dimensior of the S5ilev boundary 15 odd and therefore Qn
is not complex,
The second part of the theorem on the invariance of the complex structure
Pl 4 c
of O under the group actions 30(n) X 5002} and SQ(n, 2) follows from
the linearity of the action of SO{n) X 50(2) and from the analyticity of the
action of 50(n, £).
Remark;

Although Sah o Sl is & complex tnanrifold, it is not a Kaehler-mani-

fold; namely its first Betti number is one for k > 1, whereas the first Betti

- c ]
number of a compact Kachler manifold is even,
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We obtain aa a corecllary of the preceding theorem.

-."_'.-;::-rn::nHaJ'E:

Lok Rl : 80(n, 2) = GL I:Ill:ﬁn_l * Sl] he the representation of SO(n, 2)

2 o : -1 1 . . :
in the space of holomorphic functions on & ® 5. This representation s

n e
eguivalent to & representation of S50(n, 2) in the space HID )} of holomarpinic

functions on I = SO(n, 2) /S0({n) x S0(2).

Froof:
: ; ] : : 1= 1 T
The Poizsson integral induces an igomorphism [:H{S 8T = HID )
: ; =1 ;
by associating to each holomorphic function ge HI(S X5 } the function
feH(D") given by fiz) = [ £ (2 6) gl§) df . This mapping I, commutes
o it n-1 1
with the representation Df?hu group 50(n, &) on H{D ) and H(S~ X 5); hence
the eguivalence of the representations.
The Poisson kernel of the domain D, asscciated to the conformal group
cimM?) = 50(4, 2) has the following preperty.
Theorem!

The Poisson kernel P (z, £) is an harmenic function with respect to
L}

‘ 4 4 4
both variables = e J_]}l and £ ¢ O ; the Laplace operator on D X O being

constructed from the tensor product of the invariant metrics.

Proof:

It is zlready known that the Polsson kernel F"n[i- £) is harmonic

; £ : : by n-1 1
with respect to = and ig an invariant measyere on O = 3 xS

= 3 1 . : : :
0 = 5 %5 hasthe structure of a Lie group, given by the cartesian

1
product of the group 53 of quaterniens of norm 1 with the group 5 of

complex numbers of norm 1. Since the Polsson kernel P;;[z' £ 15 an




-2
e . 4 | &4
nvariant messure on O, We can apply the following resulilon & compack

Lie group, a necessary and sufficient condition for a form to be harmonic

& e : . 4 4
iz the invariance of this form ; therefore, B, (=,£) is harmonic on D Q.

4

7. The {Quctient Space of the Conformal Group by the FPoincarg Group.

The application of the guotient space C['Mn:l .'"PI;MH] iz the following:
4
the conformal group Gk ), extensiocn of the 10-dimensional Poincard group
4 ; : T F
P(M'), induces & additional conservation identities, associated to the
A 4 : : :
generators of the Lie algebra of C(M }, not contained in the Lie algebra of
4 ; :
P(M ) {chapter 8); it is therefore impartant to study the representations of
the Lie algebra generated by these elements in the Hilbert space
P | 4 _ -
LACIM 1/PM ). We have the result:
Thearem:

The group 50In, 2) of analytic transformations of the symmetric
1

SpRce D" operates Lransitively on the S5ilov boundary s k8 of Dﬂ;

the izotropy group of this action is isomorphic to the Poincard group F(M ).

FProof:
3
1Y We prove {irst the invariance of the bhoundary Q@ under the action of
50in, 2); since the subgroup 50(n) ¥ 50(Z) of 50(n, £) operates transi-
: T ; A , T 3
tively on O, there exists for each pair I:I:-l. 1}23 e 0 X2 2 group
2 ; n
element ge SO, 2) such that g[piil = Py The invariance of 3 under
this action follows from the properties a) and b)) of the Silov boundary,
given in the preceding chapter:
Let g be an element of 830(n, 2) and g & poinl of 0" such that

zlegh }" Qn, According to the property b), there exists a function f on
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D" with Max {l|£]} in 9. The functien f{gz) is analytic and bounded
I

in DJ, but reaches the maximum of its norm in glq), ocutside of !:*n_.
in contradiction with the property a): therefore giq) is necessarily
in @ and 50(n, 2] leawves the Silov boundary invariant.

2) We prove now that the isotropy group of the zction of 50(n, £} on Q"

is isomorphic to the Poincard group: We use the Cayley transforma-

tion F:D° = T (chapter 2} which allows to construct the isolropy

grovp in & point 2. of the boundary: F induces an isomorphism
#* -
F iz } = L iTn} of this isctropy group with the group of linear
&

, ; n . st -
tranaformations of the complex light cone T, which i5 isomorphic
to the Foincardé group P{Mn] p a5 a consequence of the transitivity

. - n s n n
af the action of 30(n, 2) on Q@ , we obtain: @ = SO(n, 2) /P(M ).
S E .
We pive an application of this result to the space l'n{T I of flunctions

defined on the cartesian product of n copies of the cone T,, and in-

4 E
variant under the action of the Poincard group

flgz,, --. . gz ) = fz, ...,z

1 4 . ;
for all =, « "J:'*Il and ge P(M ). Because of this invariance, the functions

L

are defined on the product

TL 4
|| (5044, 2) /P(M M
i=i
n

4
which is the Silev boundary of the space || (D7), . Namely, accordiag to
i=1

-
the previous theorem {]4 = 804, 2) /B(M ) and the Silov boundary of the

cartesian product of spaces is given by the product of the Silov boundaries.

n

n
4
We obtain therefore:; the map F: | | 'I'El‘i]. - | | (T ) induces the isomorphism
1
1=1 =2




S
4 5 I - 4
FIT) = @ (HIQ)), = @ (HD))
(¥ =1 1=1
Another application of the guotient space C[MHJ .-‘F'I:Mn:l is the study of the
induced representation of C{M“] by & representation of '.F‘[I'-'In:l'. we give

first the general definition of an induced representation.

Definition:

Let K be a closed subgroup of the Lie group G and let p:K — U(V)

be a unitary representation of K in the Hilbert space V. Let W be the

vector space of functions f:G—V such that flkg) = plk) £lg) for all

ke X and g ¢ G. The representation

Iip) : G = U(W)

Bl IF_ILE:I 2 flx) = fixg)

is & unitary representation of &, called the induced representation of

G by

n :
We take in the application G = SQ(n, 2), K=P(M ) and according to the

: : n ; n n :
preceding section, G/X = 0. The Silov boundary O of D being a

; : n .

compact homogeneous space, the invariant measure dv on O i
uniquely defined; we cbtain a unitary representation of 50(n, Z) in the
space of functions of Qn in WY}, On the other hand, the functions
f on QO are boundary values of holomorphic functions g on

D™ = SO(n, 2) /50(n) ¥ SO(2) given by the Poisson formula

glz) = [ P (zf) flE) 46
Gl

y
Therefore the induced representation of C{M ] iz equivalent to a repre-

sentation of Eﬂ[n‘.‘ 2) in TIV].




&  The Conservation Identities of the Conformal Group and the Eigenvalues
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of Casimir Operators.

The generators of the Lie algebra S50(4, 2} of the conformal group

4 - ; : J 1%
CIAM ) have the following commutation relations. Let B, Mi' e the
k|

e ; : ; 2 i
infinitesimal translations and rotations P = — , M, _= x, = -x — ;
i lei ij i E:-:j ] dx.

= H - : . = e - e - = :r"' e - -
then[Pi,ij 0, [F M.Jh] g5 e g, P, and [MIJ Ll =-g, Moy

M+ - M_. Th 1erator -responding to the dilatation
gjk i 'E"iIMjI-: g;jF e e generator corresp ing 2

rmatian

1
X, - & <xm, x>
i

i &
1l - 2 <&, x> + <a> <<x>

; : T 3
{«a, x> meaning the Lorentz scalar product) is given by .

o | o
L. = (— wap, X e E:r..l!:n-:"—,:-" + J.]n)
i i i Fa I
i ' i

The commutation relations are

[T A — e e o S e e
1 1§ 1 S
[Pl. J_.J.] = ”‘11-‘ gun
[M”.J_.i] TR
Frde D] S= 0

1]

Because bf the symmetry between the elements Lo and I-‘i, we abtain the
1

Tesalt:




e

FProposition:

The Lie algebra of the conformal group contains two subalgebras

isomorphic t¢ the Lie algebra of the Poincard group, namely the algebras

generated by {M'ij’ P}: } and {Mij’ Lk}'

Ae corellary we obtain that the Casimir operator of the Lie algebra generated
by {2 L.} is given by I Sy S J_.E In order to apply the regults
S Rt o ) e Wl s S S

4 4
of the chapter 7 an the quetient space C{M }/P(M )} to the eigenvalues of the

A P 2 2 - J e L :
operator ]_1 = LF‘ = j_,3 = ],.4 , We give the conservation identities asecciated

- . 4
to these generators of the Lie algebra of C{M ). Let le be the energy-

momentum tensor of the field invariant under the action of the conformal

oA o

group; for example, in the case of the Maxwell field Hi' = _JEI:-; St - '
] i x,
i i

F:
1 ' 2
L
k ey T % % ST iy

3
g T o
ij L=h

The conservation identities associated to the elements D and L, are;
i

DI S R S e e S T AT T e e o T
e At e A i.El:n-:jL j E k ki T S

We can now compute the eigenvalues of the Casimir operator

2 Fa Z 2 - 4 4, .
L]_'L'z'L3'L'.-.1 : the homogeneous space C(M ) /PIM7) is the Silov boundary
i 5 1 3 2 & 2 o
" =5 =5, and therefore the Casimir cperator L. - LE - J_.3 = ‘L'.-.1 is the

4, 4
invariant Laplace operator on the compact manifold Q77 as Q° is the
cartesian product of two manifolds we apply the general case of the product

I--Tl *» M. with Riemannian metric By @} gy - We have the result

&
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FProposition:

The spectrum of the Laplace operator of MJ. = ME is given by

Spec(M, X M) = {n+u| e Spec(M), g}, 1« Spec(M,, e.)}
in chapter 10, we obtain the set of eigenfunctions of the Laplace sperator
on En and by applying the result for n=1 and n=3, we oblain

Corollary:

2 2 2 i ;
The spectrum of the Casimir operator ]'_..i - L;_3 - L3 - La1 is given by

s_:'eu[';f} = { kik+l) | k >0 }.

g, Conformal Invariance of Free Fields,

The Klain-Gordon equation of a scalar field is [ [J - mz‘,lt,il (x] = Q.
The invariance group of this equation is the Poincaré group F'IfI'-'I‘i-:lj if
m = 0, the invariance group is the cenformal group CI:I'-{41I = 804, 2).
The Fourier transform &(k] of @ix) is # 0 on the 11'1&5'-!'3—}'U,rE:IE'-!‘If:u':l'!ltri-iflI:jl
H o ={Ek|<kk> = m }

I

and we hawve the represantation

pix) = ——= [ alk

I:ETrfI-E

o .
nl':::L,J{ AV []:':_]
™

dV (k) being the invariant measure on the hyperbolaid Hm.
m
: 2
As special case, the elementary solution Sml:}ﬂ of ([J-m Jpix] =10
is given by

I -
+1 fﬁrk.:‘.._H ﬁ{klr‘ﬂ}}
a [k]

-1 forke {Hm“{kl{ﬂ}}




ek

According to chapter 1, the set of all macs hyperboloids of I'-'I‘l is an
homopeneous space of the conformal group 50(5, &) of the Minkowski
space of aignature (1, 4); as the Fourier transfiorm of the elementary
solution 5 (x) is constant on the hyperboleid Hw, we define the space

of functions I,[Ei} on the E_ = 30(5, 2) /50(4, 2) of all hyperboloids of

5

o
M .

The stereopraphic projection of the hyperbeloid SC(5, 2) /30(4, 2)
into the bounded domain E'S = S0[5, 2) /80(2) (chapter &) induces an
isomorphism of L(ES} into the space H.:E.E‘:l of holomorphic functions
on DE'.

The connection between the space of solutions of differential
operatora in i!'-.-{n. invariant under Lhe action of the conformal group
G(M") = 50(n, 2), and the space H[Dn] is given by the following result:

We have obtained in chapter 5: the slementary solutions En of

. : Il
the wave egquaiion in M,

are constructed as bhoundary values of holomorphic functions in the

unbounded realisation

of the symmetric space n" = SMn, 2) /50(n) ® 50(2)..
Theorem:

The representation of 1’_‘,(]:-.-1“} = S0{n, 2) in the space of solutions

{w@ | [l @ = 0} of the wave equation, is equivalent to the representation
~ e

of B00n, 2) in the space H[Dn} of holomorphic funciions on D
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Proof:

The Fourier-Laplace transform giz) of =),

i<z, x>

fiz} = r aix) e Okt -::l.--.-.t_j iz an holomorphic function in
o

1
f Y ’
TR i v and the action of (M ) in M- induces eguivalent repre-
. S ¢ |

sentations of 530(n, 2) in {@ | anﬁ‘ = 0} andin the space HIT ) of holo-

. n . - n 3§ |
morphic functions on T . By introducing the map F : T =+ D of the

n

complex light cone " in the bounded domain D~ (see chapter 2), we

. . - n
obtain the eguivalence of the representations in { @ an w =0} andH[{D )

We apply the result of chapter & on the equivalence of the repre-

: n :
senkation in 11-.’]3!”'] with the representation of SQ(n, 2) in H{Q ), in the
case of n= 2k and we ohtain the corollary.,

Corollary:

For n even, the representation of SO(n, 2) in { ¢ |]:]1_l @ =01} is

rediecible and the decomposition in invariant subspaces is given by the action

4] -1 1
of 53({n, 2) on the compact space O =35 XE.
Remarl:
The zpecial structure of the solutiona of the wave eguation |:|ﬂ-=;|‘? =0

for n eveni(space dimension odd) is characterized by the Huyghens principle.
Another approach to this connection with the set of hyperbeleids in M” ie

given in

10. The Tensor Algebra of H(D").

We apply now the construction of the tensor algebra on the vector

space of solutions of




Y

Because of the invariance of the wave eguation under the action of the
confoermal group E.[]:-.-'ln:l = 50(n, £), we obtain, according to the preceding
n
gection, representations of 50(n, 2) in the space HID ) of holomorphic
n

functions on I .

We construct in this chapter an orthonermal basis {ci} af HI:Dn]

Tl

Ik = - i r . — - I
with scalar product 'if] ' I'E. f |I'1 'E[ | |1 d?i 1'3!-i . We give first
n iz
&

the definition’ of the tensor power over H(D™)
Diefinition:
- I, -4 il TR -
The tensor power of order m (H{D | }E:"J of H(ID) is the Hilkert

n
space of multilinear m-fcrmes on HID } such that

T lefa, o ... & )| = =
i e e "] m
1 m

. : - M, " :
The ocrthonormal haais {-.::_} in H{D } induces an orthonormal baais on
i

Bm

H(D") , namely {ci L . .@ui } where fti & . .E}E:.l ! is the
1 m 1 1

I

=form defined b o STy St ey = | e T icl
tn=lorm define ¥ I:&i @. @Ei | 1 m:l |: <e. K> With

5 1 m =l b
fi e HI(D)

The tensar algebra on HIfDn‘.I is defined a5 the direct sum

o @m
T(H(D™)) = @ (HD%)
m=0

which contains as subspaces the Grassmann algebra C‘r[HI:DnJ:I and the

symmetric algebra E{HI:'Dn}I,'-- Inn order to construct orthonormal bases

in these spaces, we give an explicit construction of such a basis on HiDn} "
2 n-1

Let L {5 ') be the Hilbert space of square integrable functicons on the

sphere Sn_l = 80{n) /80{n-1). We decompose the representation
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T : SOin) — o LiLo%s™ Y

3 - . -1 : . :
given by Tig){fix)} = f{g x) for g e 30(n) into irreducible subspaces.
Let T-‘_ﬂ{ﬁﬂ] be the vector space of homogeneous poelynomizals of degree k

in n variables; by considering the restriction g g R given by

flpx] = pk fix) xe S }

we obtain that FL__ [E.E] ig an invariant subspaccg of T_-ﬁl:Sn'l‘.l with
dimension
=1
d:‘_:'kqm“] ) = (!} nin+l) ... (n+k-1)-

f
The representation B : S0i(n} = GL{Pk[m b} ie reduacible: let Hkﬂmﬂ] e
the vector space of homogeneous harmonic polynomials of degree k on

B the Laplacian & on Sn_l-::. B" pives:
n I
Hk[E R R Pkim )| (&a+N)f=0, L= kintk-2) )

and one obtains

Theorermn:

The orthogonal decompoaition of pk[mﬂ} intg invariant subspaces

under the action of 53(n) is

k
where [3] is the integer part of — .

n =
FIRY) = H ®H 6. OH 3
- k-2~

Fa
(k)

; k :
Let frk ,}fll:-cil be the projection of the vector e P I:E.n] with components
L 1 IL
£l x n
e, T :-:,1,,. x iwhe_rgz i = k)
1]. ‘s & 1“, 1 I ?._1 F'

in the subspace H of harmenic poelvnomials:

be- 24
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'
The wvector w EPI:K:I has the components (') f1 H[x_} and the functions

k 3
1 1 T - -
i e TR i A L :
By s [Lk-E.E:I Il-:.-:-.',f (%} with i:j . fj :‘.j form an orthoenormal
aystermn on 5:1—1‘
The cartesian product 5° X ' is the Silov boundary Q" of D" (chapter 4]
et i i
and the functions [E}, where £ = e x, pgive an orthonormal

T By .z

wr
3 -
basis on ]___[Q“}_ We have proved, in section D . that the mapping

n A
H{L ) = L {2 )
i = il
flz) un
induces an isometry of the Hilbert space H[Dr’] of holomorphic functions

o Dn with the space _L.E[Qn}. Therefore we obtain:

Thearem:

i i ;
=, " o I = 9
The aystem { EI} = [ lzxl) gk_ﬂ[z} } is an orthonormal basis
of H{D").
An orthonormal basis in the tensor algebra T{HI(D™ ) is given by introduc-

}oof (uo™) @™

ing the elements { Etj . . - @Ej
1 I

n
11. _rE‘_:-:r:cri-::ur Farms and Spinor Forms on D .
In order to extend the theory to the nen-scalar case, we define flelds

2 : n ;
of spin # 0 on the bounded realisation Iv of the complex light cone

T n s LS : .
T = B + iV . First we construct the space of exterior forms on the

n
complex manifold D let Tch“] be the tangent space in x ¢ D and

% =
(T [Dﬁ}] its dual space, with basis dz, ..., dz_, da, ..., dz .
x 1 n 1 I
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The elements dz. A ... Adz, A da, AL, -"'-dii form a basis of the
| ! 1
n 3 P 1 & n
SpaECcE AP p™ of bihomogeneous forms of degree (p.g) on 1D . The
x

n .
exterior algebra on T}E-:D ! 15 the direct sum

AT DY = @ AR T (D)
B 4

. ] n ,
The natural extension of the helomaorphic functions on D, defined by

afr

8z,
: b P: Qi

Laplace operator & can be extended to AN HTID ) ),

0 {j=l,...,n) is given by the exterior forms of degree (p. 0}, The

Theoreatn:

i n . s
A bihomogencous form o « .-"."kp q[T[D )} is harmonic if and only

if 9= 0.
This theorem allows to extend the construction of the Polsson kernel to
the non-scalar case, The tensor algebra is defined in the same way as

in the case of spin zero (chapter 10)

T AT = @ {’J:‘[D\ﬂ'}}-@Tﬂ

I

We consider now the spinor fields on D': the main feature of the following
o . ; : n n .

construction is ta define the spinor field on M = P(M ) /50(l, n-1) (see

chapter 1} and to induce a field on ot by ueing the stercographic projec-

tion ¥ : Tn — D” ichapter 2] where 'I.'n = .'IEE.:-l + ':"'.I’n,

n n 2 2 =
Vioz{yveR |-;1-,,._Yn:=n. -,rlf-{l].

The condition on a system of n matrices Y5 of order N:

(E Ya*"i]z % [\le""'ynzj Iy
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is eguivalent to:

il
o
et

2. 5 _T
(v =Ly Y+ vy = 0 (). v = -Iyli=2 ....0)

[LN = unit matrix of order M},
For n = 2Zptl, the values of N are multiples of 2P and the elements ¥
generate the Clifford algebra C{TI:DHII ).
We construct now the elementary sclution Sn of the Dirac equation and its
Fourier transiorm; S satisfies by definition the equation
n
n 5
( P ) 5 = &1
i=1 L b d".P

If we introduce the elementary sclution E  of the scalar wave equation

{chapter 5) we obtain:

becauwse

n

(E?.i)ss(zv.f) T T
T -?:’l'-ii n {=]r x no, 2P
The Feourier transform Sn[k'.'. given by

1 1k, w

§ (k) = = IS::[;:} e dax ... dx_
(2w} %
1
satisfies the eguation ( z ¥, Kk, J SNkt
i=1 S T 2P
Therefore
~3 2 v, k. g
5%(k) = e = R ) (T
[k - -k} i

The map F : T~ D" of the complex light cone T" on the bounded demain

TP 3 :
D" pives the same relation

rn EE'J l
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L 2
S (= 8) = P=E)1 5

=

between the elementary solutions S (=, £) and P l=z, £) of the Dirac- and

rn : .
Laplace operators on I . According to the reselts of chapter >

1 AL
viD™E (1] z2 [T - 2E2) °

via™  Hz-g) (z-8) |

Po(z8) =

and therefore the coefficient of the elementary solution S (= £} is
] |

( vip™) ?T
*J[Qn}

Application; 36

The structure constant a , which measures the elementary chargs,
iz interpreted as coefficient of the Green function of the Dirac equation in

momentum Epace,
The invariance group of the Dirac equation

(f Y, %.>.L-I}

izl 1

in the space of signature (4, 1) (the coordinate x_ being cﬂnjugatels to the

5
5

mass m) is invariant under the conformal group C{M ) = 50(5, Z). In the

representation space ©C I-I{DE:I of the spinor formes on o= S0O(5, 2)/30(5)x50(2),

the coefficient of the Fourier transform of the elementary solution is

]

1
1 e g 5%
—_ TR s A [ viD")

, . 16 :
which gives the value of the structure constant a.
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