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Abstract

The Riemann’s hypothesis (RH) states that the nontrivial zeros of the
Riemann zeta-function are of the form s, = 1/2 + i\n. Earlier work on
the RH based on supersymmetric QM, whose potential was related to
the Gauss-Jacobi theta series, allows to provide the proper framework to
construct the well defined algorithm to compute the probability to find a
zero (an infinity of zeros) in the critical line. Geometric probability theory
furnishes the answer to the very difficult question whether the probability
that the RH is true is indeed equal to unity or not. To test the validity
of this geometric probabilistic framework to compute the probability if
the RH is true, we apply it directly to the the hyperbolic sine function
sinh(s) case which obeys a trivial analog of the RH (the HSRH). Its zeros
are equally spaced in the imaginary axis s, = 0 + inm. The geometric
probability to find a zero (and an infinity of zeros) in the imaginary axis
is exactly unity. We proceed with a fractal supersymmetric quantum me-
chanical (SUSY-QM) model implementing the Hilbert-Polya proposal to
prove the RH based by postulating a Hermitian operator that reproduces
all the A\, for its spectrum. Quantum inverse scattering methods related
to a fractal potential given by a Weierstrass function (continuous but
nowhere differentiable) are applied to the fractal analog of the Comtet-
Bandrauk-Campbell (CBC) formula in SUSY QM. It requires using suit-
able fractal derivatives and integrals of irrational order whose parameter
3 is one-half the fractal dimension (D = 1.5) of the Weierstrass function.
An ordinary SUSY-QM oscillator is also constructed whose eigenvalues
are of the form A\, = nm and which coincide with the imaginary parts of
the zeros of the function sinh(s). Finally, we discuss the relationship to
the theory of 1/ f noise.

1 Introduction

Riemann’s outstanding hypothesis that the non-trivial complex zeros of the zeta-
function ¢(s’) must be of the form s/, = 1/2 £ i), is one of most important
open problems in pure mathematics. The zeta-function has a relation with the
number of prime numbers less than a given quantity and the zeros of zeta are
deeply connected with the distribution of primes [1]. References [2, 3, 4] are
devoted to the mathematical properties of the zeta-function.

The RH has also been studied from the point of view of physics (e.g., [5, 6, 7,
8, 9]). For example, the spectral properties of the \,,’s are associated with the



random statistical fluctuations of the energy levels (quantum chaos) of a classical
chaotic system [8]. Montgomery [10] has shown that the two-level correlation
function of the distribution of the \,’s coincides with the expression obtained
by Dyson with the help of random matrices corresponding to a Gaussian unitary
ensemble. Planat [11] has found a link between RH and the called 1/ f noise. Wu
and Sprung [12] have numerically shown that the lower lying non-trivial zeros
can be related to the eigenvalues of a Hamiltonian having a fractal structure.
For a recent and nice discussion on several quantum hamiltonians related to the
prime numbers distribution and the zeros of the zeta function see the work by
Rosu [13].

Since the literature on the topic is rather extensive we refer the reader to a
nice review of zeta-related papers which can be found in Ref. [14].

Scattering theory on real and p-adic symmetric spaces produces S-matrices
involving the Riemann zeta function [15]. Scattering on the noncompact finite
area fundamental domain of SL(2, Z) on the real hyperbolic plane was studied
long ago by Fadeev and Pavlov [16], and more recently by Planat and Perrine
[17] within the context of the deep arithmetical properties underlying the physics
of 1/f noise.

Scattering matrix s-wave amplitudes for scattering in the Poincare disk can
be expressed in the form [18]:
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where c(k) are the Harish-Chandra c-functions (Jost functions). The Jost func-
tions are defined whether the space is symmetric or not, and whether a suitable
potential is introduced or not. One may notice that when k is real-valued the
numerator of (1) is the complex conjugate of the denominator and for this rea-
son one can write S(k) as a pure phase factor as indicated in the r.h.s. However
when k is complex-valued this is no longer the case and S(k) is no longer given
by a pure phase factor. For example, the complex poles of S(k) correspond
to the zeros of the zeta functions in the denominator and to their poles in the
numerator. s-wave scattering by a potential with a cutoff have been recently
studied in [19], where the complex zeros of the Jost functions yield the complex
poles of the S-matrix that are located on a horizontal line (below the real axis)
and which can be mapped into the critical line of zeros of the Riemann zeta func-
tion. They represent resonances. For example, in the case of s-wave scattering
in the hyperbolic plane (Poincare disk) one can show that the complex-poles of
the S-matrix correspond to the nontrivial zeros when,

ke = i(1/2 + i) (2)

Hence, a Wick rotation of the Riemann critical line yields the complex momenta
associated with the double poles of the S-matrix above; i.e. the double zeros of
the denominator. If one could find a physical reason why the complex double
poles of the S-matrix should always occur in complex-conjugate pairs:

—iky = (L4 ikp)* =1 — ik = ky = i(1/24 i\), (3)



one would have found a physical proof of the RH. Pigli has discussed why
scattering theory on real and p-adic systems involving the Riemann zeta function
belong to a wide class of integrable models that can be unified into an Adelic
integrable systems whose S-matrix involves the Dirichlet, Langlands, Shimura,
L-functions.

In this work we will also invoke an integrability property associated with
the quantum inverse scattering problem associated with a (fractal) SUSY QM
model that yields the one-to-one correspondence among the imaginary parts of
the zeta zeros A, with the phases «,, of a fractal Weierstrass function. One could
also consider a stochastic process having an underlying hidden Parisi-Sourlas
supersymmetry, as the effective motion of a particle in a potential which can be
expanded in terms of an infinite collection of p-adic harmonic oscillators (See
in [20]). But in this case we will focus entirely on a fractal SUSY QM model
with a judicious fractal potential.

Wu and Sprung have made a very insightful and key remark pertaining
the conundrum of constructing a one-dimensional integrable and time-reversal
quantum Hamiltonian to model the imaginary parts of the zeros of zeta as an
eigenvalue problem. This riddle of merging chaos with integrability is solved by
choosing a fractal local potential that captures the chaotic dynamics inherent
with the zeta zeros.

By a Fractal SUSY QM model studied here, we do not mean systems with
fractional supersymmetries which are common in the string and M-theory liter-
ature, but a Hamiltonian operator that admits a factorization into two factors
involving fractional derivative operators whose irrational order is one-half of
the fractal dimension of the fractal potential. A model of fractal spin has been
constructed by Wellington da Cruz [21] in connection to the fractional quan-
tum Hall effect based on the filling factors associated with the Farey fractions.
The self-similarity properties of the Farey fractions are widely known to posses
remarkable fractal properties [22]. For further details of the validity of the RH
based on the Farey fractions and the Franel-Landau [23] shifts we refer to the
literature on the zeta function.

In previous work [20, 24, 25] we have already explored some possible strate-
gies which could lead to a solution of the problem. The last one was based on
the relation of the non-trivial zeros of the (-function with the orthogonality of
eigenfunctions of the appropriately chosen operator (see also [26, 27, 28]). We
have not assumed any ad-hoc symmetries like conformal invariance, but in fact,
we shown why the ¢ — 1/t symmetry is in direct correlation with the s’ — 1—5’
symmetry of the Riemann’s fundamental identity Z(s") = Z(1—s"), the function
Z is the Riemann fundamental function defined in (12). This was the clue of
our proposal to proof the RH.

In this work we illustrate the method in [25] by applying it to the study of
the zeros of a very simple function, the sinh(s). The proof that the zeros of
sinh(s) are given by 0 + iy, = 0+ inx is trivial. Nevertheless, one can still
furnish another proof following the same steps as the proof of the RH in [25].

The contents of this work are the following. In Section 2 we review the proof
of the RH [25] and concentrate in 2.2 on a SUSY QM model whose potential is



related to the Gauss-Jacobi theta series. The inner product of the eigenfunctions
¥s(t), ¥s(1/t) of the partner (non-Hermitian) Hamiltonians H 4, Hp is given by
Z(as + b) while their spectrum is s(1 — s) which happens to be real only in the
critical line (location of the nontrivial zeta zeros) and in the real axis (location
of the trivial zeta zeros). In 2.3 some important remarks about the Eisenstein
series and our approach are made. In Section 3 we present a proof of the HSRH,
the hyperbolic sine version of the RH.

In Sections 4 and 5 a discussion of a completely different approach to this
problem is provided where we construct the well defined algorithm to compute
the geometric probability to find a zero (an infinity of zeros) in the critical line;
i.e. we show how to find the probability that the RH is true; when P = 1
the RH is true and when P < 1, it is false. In Section 6 we consider the
ordinary SUSY QM model solution to find the imaginary parts of the zeros of the
sinh(s) function, and finally we construct the fractional (fractal) supersymmetric
quantum mechanical (SUSY-QM) model whose spectrum yields the imaginary
parts A, of the nontrivial zeros of zeta. It is based on a quantum inverse
scattering method related to a fractal potential given by a Weierstrass function
(continuous but nowhere differentiable) that is present in the fractal analog of
the Comtet-Bandrauk-Campbell (CBC) formula in SUSY QM. It requires using
suitable fractal derivatives and integrals of irrational order whose parameter g
is one-half the fractal dimension of the Weierstrass function. In the concluding
remarks we show the relation to the theory of 1/f noise.

2 Nontrivial (’s zeros as an orthogonality rela-
tion

2.1 The Scaling Operators related to the Gauss-Jacobi
Theta series
Our proposal to compute the geometric probability begins with the introduction
of the appropriate generalized scaling operator D;
d dv
———t+—+k 4
dn¢ | dlnt " )

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

D; =

ps(t) =t~V (5)
D; is not self-adjoint since its eigenvalues are complex valued numbers s. We
also define the operator dual to D as follows,
= i + ﬂ + k
dlnt = dlnt
that is related to Dy by the substitution ¢ — 1/t and by noticing that

dv(L/t) _ dv(1/)

dIn(1/t) dlnt ’

D, (6)




where V(1/t) is not equal to V (¢).
Since V(t) can be chosen arbitrarily, we choose it to be related to the
Bernoulli string spectral counting function, given by the Jacobi theta series,

e2V(t) _ Z efﬂ'thl _ Qw(tl) +1. (7)

n=—oo

This choice is justified in part by the fact that Jacobi’s theta series w has a deep
connection to the integral representations of the Riemann zeta-function [29].
Latter arguments will rely also on the following related function defined by

Gauss,
o0

G(l/z)= > e ™7 = 2uw(1/z) + 1, (8)
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where w(z) = > e~™"% Then, our V is such that e2V(® = G(t'). We defined
n=1
x as t!. We call G(z) the Gauss-Jacobi theta series (GJ).

Thus we have to consider a family of D; operators, each characterized by
two real numbers k and [ which can be chosen arbitrarily. The measure of
integration dlnt is scale invariant. Let us mention that D; is also invariant
under scale transformations of ¢t and F = e" since dV/(dInt) = dIn F/(dInt).
In [26] only one operator D; is introduced with the number k£ = 0 and a different
(from ours) definition of F'.

We define the inner product as follows,

(flg) = / gt

P
0

Based on this definition the inner product of two eigenfunctions of Dy is
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where we have denoted s12 = s7 + s2 = 1 + x2 + i(y2 — y1) and used the
expressions (7) and (12).
‘We notice that
<¢s1|¢82> = (wso|¢8>a

thus, the inner product of 15, and 1, is equivalent to the inner product of v,
and ¢, where s, = 1/2+40 and s = s12—1/2. Constant « is to be appropriately
chosen so that the inner product in the critical domain is semi-positively definite.
The integral is evaluated by introducing a change of variables t! = x (which gives
dt/t = (1/1)dz/x) and using the result provided by the equation (8), given in



Karatsuba and Voronin’s book [2]. Function Z in (12) can be expressed in terms
of the Jacobi theta series, w(z) defined by (7) (see [3]),

0 oo

2
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(11)

Z(s) = 7 0(5)C(s), (12)

where

which obeys the functional relation Z(s) = Z(1 — s).

Since the right-hand side of (11) is defined for all s this expression gives the
analytic continuation of the function Z(s) to the entire complex s-plane [3]. In
this sense the fourth “=” in (11) is not a genuine equality. Such an analytic
continuation transforms this expression into the inner product, defined by (10).

A recently published report by Elizalde, Moretti and Zerbini [28] (contain-
ing comments about the first version of our paper [30]) considers in detail the
consequences of the analytic continuation implied by equation (11). One of the
consequences is that equation (10) loses the meaning of being a scalar product.
Arguments by Elizalde et al. [28] show that the construction of a genuine inner
product is impossible.

Therefore from now on we will loosely speak of a “scalar product” realizing
that we do not have a scalar product as such. The crucial problem is whether
there are zeros outside the critical line (but still inside the critical strip) and
not the interpretation of equation (10) as a genuine inner product. Despite this,
we still rather loosely refer to this mapping as a scalar product. The states still
have a real norm squared, which however need not to be positive-definite.

Here we must emphasize that our arguments do not rely on the validity
of the zeta-function regularization procedure [31], which precludes a rigorous
interpretation of the right hand side of (11) as a scalar product. Instead, we
can simply replace the expression “scalar product of ¥, and v¥,” by the map
S of complex numbers defined as

S: C®C — C
(13)
(s1,82) +— S(s1,82) =—Z(as+Db),

where s = s 4+ s2 — 1/2 and a = —2/1;b = (4k — 1)/l. In other words, our
arguments do not rely on an evaluation of the integral (1, |1)s,), but only on the



mapping S(s1, s2), defined as the finite part of the integral (10). The kernel of
the map S(s1, s2) = —Z(as+b) is given by the values of s such that Z(as+b) = 0,
where (Y, [tVs,) = (s, |¥s) and s, = 1/2 +i0. Notice that 2b + a = 4(2k —
1)/l. We only need to study the “orthogonality” (and symmetry) conditions
with respect to the “vacuum” state s, to prove the RH. By symmetries of the
“orthogonal” states to the “vacuum” we mean always the symmetries of the
kernel of the S map.

The “inner” products are trivially divergent due to the contribution of the
n = 0 term of the GJ theta series in the integral (10). From now on, we
denote for “inner” product in (10) and (13) as the finite part of the integrals by
simply removing the trivial infinity. We shall see in the next paragraphs, that
this “additive” regularization is in fact compatible with the symmetries of the
problem.

We can easily show that if ¢ and b are such that 2b + a = 1, then the
symmetries of all the states 1; orthogonal to the “vacuum” state are preserved
by any map S, equation (13), which leads to Z(as + b). In fact, if the state
associated with the complex number s = x + ¢y is orthogonal to the “vacuum”
state and the “scalar product” is given by Z(as+b) = Z(s'), then the Riemann
zeta-function has zeros at s’ = 2’ +1iy/, s’*, 1 — s’ and 1 — s’*. If we equate
as+b =, then as* + b = s™. Now, 1 — s’ will be equal to a(1 — s) + b, and
1 — s will be equal to a(l — s*) + b, if, and only if, 20 + a = 1. Therefore, all
the states 15 orthogonal to the “vacuum” state, parameterized by the complex
number 1/2 + 40, will then have the same symmetry properties with respect to
the critical line as the nontrivial zeros of zeta. See Figure 2.

Notice that our choice of a = —2/l and b = (4k — 1)/l is compatible with
this symmetry if k and [ are related by [ = 4(2k — 1). Conversely, if we assume
that the orthogonal states to the “vacuum” state have the same symmetries of
Z(s), then a and b must be related by 2b+a = 1. This results in a very specific
relation between k£ and [, obtained from a + 2b =1 for a, b real. It is clear that
a map with arbitrary values of a and b does not preserve the above symmetries.

Therefore, concluding, the inner product (1, [t0s,) is equal to (s |1)s) =
Zla(s —1/2) + 1/2] = Z(s') where s = s} + so — 1/2. For example, if we set
l=—2,then k=1/4,a =1, b =0, and consequently s’ = s in this case; i.e.
the position of the zeros s coincide with the location of the orthogonal states )
to the reference state v¢s,. A figure displaying this particular case is Figure 3.

2.2 The zeros from supersymmetric quantum mechanics

A different way to prove the RH can be found following the Hilbert-Polya pro-
posal by finding Hermitian operators that reproduce the zeros as its spectrum.
We will see also that this symmetry of the “vacuum”, is also compatible with
the isospectral property of the two partner Hamiltonians,

- [d av(y d  dv()
Ha=D:Dr =595 dln(1/t)+kH dlni  dlnt

+k|, (14)



and

Hp =D1Dy =

d  dv() kH d  dv(i/t)
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Notice that V(1/t) # V(¢) and for this reason Dj is not the “adjoint” of Dj.
Operators defined on the half line do not admit an adjoint extension, in gen-
eral. Hence, the partner Hamiltonians H4, Hp are not (self-adjoint) Hermitian
operators like it occurs in the construction of SUSY QM. Consequently their
eigenvalues are not real in general.

Nevertheless one can show by inspection that if, and only if, 4(1/t) =
t1-s(t) then both partner Hamiltonians are isospectral (like in SUSY QM)
whose spectrum is given by s(1 — s) and the corresponding eigenfunctions are,

Haths(t) = s(1 = s)hs(t), Hpts(1/t) = s(1 — s)ibs(1/). (16)

Firstly by a direct evaluation one can verify,

Dﬂbs(t) = Sws(t)7 D2¢s(1/t) = Sws(l/t)v (17)

i.e. ¥s(t) and 1s(1/t) are eigenfunctions of the Dy and Do operators respectively
with complex eigenvalue s. Secondly, if, and only if, the condition 4(1/t) =
1-4(t) is satisfied, then it follows that:

Hevu(1)) = DiDabu(1/) = sDwif) = g
sDir—s(t) = s(1—s)1-s(t) = s(1—s)s(1/1),

meaning that ¢,(1/t) is an eigenfunction of Hp with s(1 — s) eigenvalue.

HAws(t) = D2D1¢s(t) = 5D2ws(t) =
sDath1_s(1/t) = s(1—s)1-s(1/t) = s(1 —s)s(t),

meaning that 14(t) is an eigenfunction of H4 with s(1 — s) eigenvalue.

Therefore, under condition ts(1/t) = ¥1_4(t) the non-Hermitian partner
Hamiltonians are isospectral. The spectrum is s(1 — s). The operators H4 and
Hp are quadratic in derivatives like the Laplace-Beltrami operator and involve
two generalized dilatation operators D; and Dy. Notice the most important
results of this section:

1. On the critical Riemann line, because Re(s) = 1/2 — 1 — s = s*, the
eigenvalues are real since s(1 — s) = ss* is real. The function Z(s) is also
real on the critical line as a result of the Schwarz reflection principle of the
function Z(s) = u(s) + iv(s) obeying u(s*) = u(s); v(s*) = —v(s) so due to
the condition 1 — s = s* (true only for points living in the critical line) and
Z(s)=Z(1—s) = Z(s*) = Z*(s), allows to infer that Z(s) is real-valued in the
critical line.

2. On the real line, the eigenvalues s(1 — s) are trivially real.

Therefore, the spectrum s(1 — s) of the two partner (non-Hermitian) Hamil-
tonians is real-valued when s falls in the critical line (location of nontrivial zeros)

(19)



and when s falls in the real line (location of trivial zeros). Hence, the SUSY QM
model yields the precise location of the lines of the trivial and nontrivial zeros of
zetal. Notice the similarity of these results with the eigenvalues of the Laplace
Beltrami operator in the hyperbolic plane associated with the chaotic billiard
living on a surface of constant negative curvature. In that case the Selberg zeta
function (which obeys the RH) played a crucial role [6].

The states 14(t) constitute an over-complete basis. An orthonormal dis-
crete and complete basis can be found, when s, = 1/2 + i),, by simply re-
curring to the orthogonality conditions of the states 15, with respect to the
“ground” or “vacuum” state vs, = 1 /2140. By starting with o(t) = 1, the
first orthonormal state is 1 (t) = a119s,. The naive normalization condition
(s, [1hs,) = a2, Z(1/2 +i0) = 1 would have yielded the value of the coefficient
a11. However, there is a problem because the value Z(1/24i0) = —3.97697 < 0.
The function Z(1/2+1y) is real for all values of y and since there are an infinity
of zeros in the critical line these real values are not always positive definite.
There are oscillations between positive and negative values. For this reason, the
correct way to define the normalization condition (and “inner” products) is to
take the absolute values: |(1s, [ths,)] = a%,|Z(1/2 + i0)] = 1, and a1 can be
derived satisfactory.

Iterating this procedure gives:

z/}n(t) = Z AnmWPs,, (t)a (20)

for all s, = 1/2 + i\, such that m = 1,2,..n. The coefficients a,,, are
determined by imposing the orthogonality and normalization conditions with
the provision that absolute values have to be taken:

(o (D) (8))] = .- (21)

In this fashion the discrete and complete orthonormal basis 1 (t), ¥a2(t),...
Yn(t), Yny1(t), all the way to n = oo of states is constructed in terms of the
eigenfunctions ©4(t),1¥s(1/t) of the two partner H4, Hp Hamiltonians associ-
ated with a SUSY QM model and which is entirely based on the locations of
the nontrivial zeros of zeta in the critical line.

To sum up, the inversion properties under ¢ — 1/t of the eigenfunctions of
the infinite family of differential operators, D§k’l) (t) and Dék’l) (1/t), compatible
with the existence of an invariant “vacuum”, are responsible for the isospectral
condition of the partner non-Hermitian Hamiltonians, H 4 and Hp, like it occurs
in SUSY QM. The spectrum s(1 — s) is real in the critical line (location of the
nontrivial zeros) and in the real line (location of the trivial zeros). The quantum
inverse scattering problem associated with a fractal SUSY QM model which
yields the imaginary parts of the nontrivial zeros consistent with the Hilbert-
Polya proposal to prove the RH will be studied in Section 6. The supersymmetric
ground state is precisely that associated with s, = 1/2 + 0. Rosu has recast
our SUSY QM wave equations into a transparent SUSY QM form [13].



2.3 A remark on Eisenstein series

Let’s emphazise the importance of the Eisenstein series E(s, z) being the two-
dimensional analog of what we did in Section 2.

Using the fundamental function Z(s) = Z(1 — s) one constructs the func-
tion I(s,z) defined as I(s,z) = Z(2s)E(s, z) which obeys the same functional
relation as the Z(s) (See [32]). Notice the crucial 2s argument inside the Z. It
reads:

I(s,z) =I(1—s,z2). (22)

Note that it is the function I(s,z) and not the E(s,z) that obeys the same
functional relation as Z(s).

The function I(s, z) admits also a theta series representation, and the eigen-
functions of the 2-D Laplacian in the hyperbolic plane are given by the E(s, z).
The eigenvalue problem for the two-dimensional Laplacian in the hyperbolic
plane is:

5 [ 02 0? B _ B
Yy (@ + 8—y2) (s,2) = =s(1 —8)E(s, z), (23)
where z = = + iy (notice the eigenvalues). One has used the Laplace-Beltrami
differential operator in non-Euclidean geometries. The hyperbolic metric is
conformally flat and for this reason the hyperbolic Laplacian must be conformal
to the ordinary Laplacian in flat spaces. This explains the prefactor of 32 in
front of the ordinary Laplacian.

Since the Laplacian is two-dimensional, this means that the Eisenstein series
E(s, z) are the 2-D version (s, z are both complex and independent) of our
eigenfunctions (s, t) of the 1-D Laplacian-like operator obeying:

HAw(Sat) - 8(1 - S)w(svt)a (24)

and
Hii(s,1/t) = s(1 — 5)i(s, 1. (25)

The Hy, Hp are the two partner Hamiltonians in our SUSY-QM model,
which is a 1-D model defined on half of the real line: 0 < ¢ < co.

Whereas the hyperbolic plane where the 2-D Laplacian acts, is represented
as the upper half of the complex plane given by the coordinates z.

Concluding, the “¢” in our ¥ (s, t) does correspond to the “z” in E(s,z). Of
course, on the Riemann critical line the spectrum s(1—s) is real (and on the real
line, trivial zeros). The advantage in our approach is that the inner products of
our eigenfunctions (s, t) yield the fundamental function Z(as + b) and there
is a one-to-one correspondence between the zeta zeros and the ortogonality
conditions on the (s, t) eigenfunctions.
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3 The analog of the Riemann hypothesis for the
function sinh(z)

It can be proved in an straightforward way that the function of complex variable
sinh(z) has its zeros in the imaginary axis where the real parts of all the zeros
are zero s = 0 + imn by simply using the addition law of the sines: sinh(z) =
—isin(iz) = —isin(iz — y) = sinha cosy + icoshzsiny =0 = =0, y =mn.

We note that z = 0 4 40 is a trivial zero. In this section we will propose a
different strategy, based on a representation of this function in the form of a
scalar product of two functions. And in the next section, we will compute the
probability to find a zero (an infinty of zeros) in the imaginary axis and prove
that it is exactly given by unity.

Our proposal begins with introducing the appropriate operator D; which is

not self adjoint,
d

:a7

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

D, (26)

¥s(x) = X, (27)

We restrict x to be into the interval [—1,1].
We will only suppose that the following symmetries of our test function
sinh(z) are known,

sinh(z + 2imn) = sinh(z), sinh(—z) = — sinh(z), (28)

n is an integer. Note that sinh(z) obeys the Schwarz reflection condition
sinh*(z) = sinh(z*). Therefore if sinh(s) = 0, then sinh*(s) = sinh(s*) = 0,
which means that s* is also a zero if s is a zero. Thus the zeros appear in pairs
of complex conjugates. Since sinh(—s) = — sinh(s), the zeros are also reflection
symmetric with respect to the origin, hence there is a quartet of zeros, living in
the vertices of a rectangle, symmetrically distributed with respect to the hori-
zontal and vertical axis. Like it occurs with the zeta zeros, one has a rectangle
whose vertices are symmetrical located with respect to the Riemann critical line
and horizontal axis (See Figure 2).
We can simply show why the function of the complex variable z (See Figure
1), .
G = T _ g, (20)

z

that has analogous symmetries as the Z(s) in the Riemann zeta case (12). can
be obtained from an “inner” product as follows:

<ﬂm=/jww. (30)
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The reason we choose the lower and upper limits [—1, 1] is because we have to
introduce a cutoff to regularize the “inner” products.

Based on this definition, the “inner” product of two eigenfunctions of D is
indeed given by,

sinh(s] + s2)
57+ s2

1
(os sy = / (eiHsxgy = — G(s), (31)
21

where s = s} + 2. Thus, (Y5, [¢Vs,) = G(sT + s2) = G(s).

The (known) zeros of the function G(s) are given by the kernel of the map
from C? — C defined as F(s1, s2) = G(s) = sinh(s)/s where s = s} + so. It is
very important to emphasize that whether we have rigorously speaking a true
inner product or not is irrelevant to the calculation of the geometric probability
(in the next section) because we will be just “counting” the number of possible
pairings (s1, s2) that generate a given zero s to evaluate the probabilities. Hence,
the inner product property is not essential. It is the fact that we are searching for
the pairings that generate the kernel of the map F'(s1, s2) = G(s) = G(s + s2).

Concluding, the “scalar” product of 15, and s, defines the following map
S:

S: C®C — C

(s1,82) +— S(s1,82) = G(s] +s2) =G(s) =

sinh(s). (32)

The kernel of the map S(s1, s2) = G(s) is by definition given by the values of s
such that G(s) = 0; i.e. by the zeros.

In the imaginary axis s = 0 + iy, we have that s* = —s, and due to general
reflection symmetry of the G(s) function with respect to the origin 0+¢0 we have:
G(s) = G(—s) = G(s*) = G*(s) (Schwarz reflection principle) and hence G(s)
is real-valued in the imaginary axis like the function Z(s) was real valued in the
critical line. Thus the function G(s) shares similar symmetries and behaviour
as the Z(s) function which reinforces our arguments in favour of a probabilistic
appproach to prove the RH.

In the next section we will show in rigorous detail how to compute the prob-
abilty to find a zero (an infinity of zeros) in the imaginary axis Y of the sinh(s)
function and we shall find that it is exactly 1. This is a test that the probabilis-
tic approach to solve the RH is valid. The important point is that both zeros of
the Z(s) and G(s) functions can be treated within the framework of geometric
probability. To locate the y values of the zeros of sinh s and {(s) using the SUSY
QM model follows in the next sections. Of course one can trivially determine
the zeros of sinh(s), by simply using the sum rules for trigonometric/hyperbolic
functions that leads to s, = 04+ nm, but we wish to show now how they can also
be determined via a SUSY QM model, in addition to the probabilistic method.

12



4 The probabilistic interpretation of the RH

Our procedure differs completely from the well known probability proposal of
the RH made by Denjoy [33] long ago. In this section we will evaluate the
probability to generate a zeta zero resuting from the inner product of pairs of
states associated with two complex numbers (1, [tVs,) = (Vs |ts) = Z(s) =
0. Related to this problem is the celebrated Montogomery-Dyson correlation
distribution law:

sin?(7x)

P=1 :

() (33)
for the differences among pairs of the imaginary parts of the zeta zeros A; — A;
found by Montogomery, assuming the RH is true, which turned out to agree
with the same correlation distribution law for the pairs of eigenvalues of large
random hermitean matrices of the Gaussian unitary ensemble (GUE) found by
Dyson.

Since this approach based on random matrix theory (RMT) is based on the
assumption that the RH is true, we shall evaluate the probabilities to generate
a zeta zero using techniques borrowed from geometric probability theory; i.e.
by evaluating probabilities in terms of the ratios of areas and whose results, in
turn, will bring us closely to the Montogomery-Dyson probability distribution
associated with random matrix models.

Given an orthogonality relation among any two states, we have shown that it
can be recast in terms of an orthogonality condition with respect to the vacuum
reference state as:

(s, ths,) = (s, |¥0s) = Z(as +b) = Zla(s = 1/2) + 1/2| = Z(s') =0,  (34)

where s = s7+ so — 1/2. For simplicity we shall fix the value of a = 1, once and
for all, such that the location of the zeta zeros s’ coincides with s = s'.

Rigorously speaking one does not have an inner produt as such, however,
this does not affect the probability outcome because we will be counting in how
many ways the pairs of complex numbers (s1, $2) generate a zero s from the
mapping of C2 — C defined as S(s1,s2) = Z(s). Whether the inner product
notation (s, |ts,) is the correct one to use is irrelevant. The relevant issue is
that the nontrivial zeros are given by the kernel of the map S(s1, s2) = Z(s) = 0.

To be able to solve this problem of computing the probability to find an
infinite number of nontrival zeta zeros in the critical line, and wether or not this
probability is truly equal to 1, it will help us to prove that the probability that
the infinite number of zeros of the function sinh(s) fall in the imaginary axis is
exactly 1. All the zeros of the sinh(s) function fall in the imaginary axis, which
is an analogous example of the Riemann zeta zeros. It is straightforward to show
why the zeros are s, = 0 + inw by simply using the sum rule of trigonometric
functions:

Given that sin(is) = isinh(s) = 0 it can be infered that:

sin(ix — y) = isinhx cosy — cosh xsiny = 0, (35)
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upon equating the real and imaginary parts to zero, it gives s,, = 0+ inm as the
only solution. The fact that we can also prove that the probability to find all
the zeros of sinh(s) in the vertical axis is unity is a very good test indeed that
our procedure to solve the RH is valid.

The way to tackle this problem of computing probabilities to find all the
nontrivial zeros is to recast it in terms of geometric probability (stochastic ge-
ometry), in particular, what is called the triangle-picking problem inside a given
domain. Since one is searching for those configurations of 3 points s1, s2, s of
the complex plane in the shape of triangles and lines (when the case the 3 points
are colinear) such that the inner products of the states (g, [ths,) = (Vs |1s) =
Z(s) =0, where s = s7+s2—1/2 and s, = 1/2+10, and we have fixed the value
of the parameter a = 1, once and for all, in Section 2 so that the zeta zeros
s’ =a(s—1/2)+1/2 = s coincide precisely with the values of s (the orthogonal
state to the vacuum/reference state).

The idea is to “count” in how many ways the pairs (s1,s2) of complex
numbers generate a given zero s and divide by the total number of possible pair-
combinations to obtain a probability. Geometric probability provides us with
the answer!. To every given zero s the average area of all the possible triangles
generated from the 3 points si, s, s inside a given region in the complex plane
is:

° [ Altriangle)dz dzodzdy, dysdy

A
(4) [ dxydzodrdy, dysdy ’

(36)

where the area of the triangle A sustained by 3 points is given by 1/2 times
the absolute value of the determinant of the 3 x 3 matrix whose entries are
{(z1,22,2); (y1,y2,¥); (1,1,1)} and the integrals can be restricted to the square
domain of sides equal to L such that it encloses the zero s. Explicitly, the
determinant is given by —xz1y + 22y + xy1 — To2y1 — TY2 + T1Yo.

In the triangle-picking case, to compute the probability P(ay, +i53,) of gen-
erating a zero, au, + i3,, where n labels the rectangle located in the complex
plane whose four vertices:

an +10n;an —iBn; 1 —ap —i8p; 1 — ap + 16, (37)

are the location of possible zeta zeros, we must integrate with respect to the
point coordinates inside the entries of the matrix determinant and which must be
constrained to obey the following conditions imposed from the inner products:

r=x1+ 22— 1/2=0ay = 22 = (an +1/2) — 21, (38)

and
Y=1Y2—y1 = Bn = Y2 = Y1 + On, (39)

leading to a reduced integral with respect the variables (z1,y1) only as follows:

. | A(triangle)dz dy:
An n n)) = .
< (a + Zﬂ )> f d’JJ1dy1

(40)
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This reduced integral is an explicit function of «,,, (3, that appears in the deter-
minant. Since we face the problem that the complex domain has infinite area we
restrict the integrals to a square of size 2L, centered in the center of symmetry
1/2 + 40, and enclosing the zero a, + i3,.

The determinant of the 3 matrix yields,

0121 ) — (o +1/2)3 + 2 (41)

After performing the double integral of the determinant with respect to the
x1,%y1 variables, one is left with the value of the average area, after multiplying
the determinant by a factor of 1/2. Thus the average area of all the family of
triangles associated with each particular zero of the form «, + i3, is written
(An(an, Ba))-

In the particular case of the Riemann zeros living in the critical line we have
that a, = 1/2 and 3, = A\,,. The areas in the integrand are given in this case
by:

2 2

One can verify that in general the determinants (areas) in the integrands are

invariant under the symmetry transformations of the Z(s) function,

r1—1—x1; ap —1—an; y1 — —y1; Bn — —0On, (43)

and, of course, under complex conjugation y; — —y; and 3, — —/f, leaving the
z-values fixed. Therefore, all the points in the vertices of the rectangles have
identical statistical weights (triangle area-average) as they should.

To sum up, the area-average of all the triangles associated with a given zero
1/2 + A, for n = 1,2,...N, which are enclosed by a single square Dy of sides
2L N = 2AN41, centered at the center of symmetry 1/2 + 40, is given by:

/

Dn

An
z1(2y1 — An) — Y1 + 7‘ dx1dy:

2 / d:cldyg

Dn

(An(An; L)) = (44)

To evaluate the integral of the absolute values of the determinants, the sim-
plest way to proceed is by simply performing a judicious change of a variables
x1 — o1+ 1/2 = 2, leaving y; fixed, of unit Jacobian, such that the integrand
is now simplified to be just the absolute value of a product, which is equal to the
product of absolute values, |z}| X |2y1 — Ay,|. The 2’ integration is now between
the limits [1 — Ly, 1+ Ly] and the y-integration is between [—Ly; Ly]. Upon
splitting these domains of integration as a result of taking the absolute values
yields for the triangle area-averages:

1 1+Ly 0 Ln An/2
g [ s [ st ) [ em e [ e - A | -
N 0 1-Ln )\n/Q —LnN
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1+ L3 P
(s L) = Sz (T +22)). (45)
where the cutoff Ly = Any41. As expected these area-averages are symmetric
functions in A,, because the statistical weights of pairs of complex conjugates
are the same. Notice the correct units. The 1 in the factor 1+ L% has area-units
such that it cancels the units of L% in the denominator leaving an expression
with an overall dimension of area.

The integral domain where one evaluates all these area-averages, for n =
1,2,...N is chosen to be a single square Dy that encloses the zeros 1/2 +
iA1,1/2 +iXa,...,1/2 + Ay as well as the ensemble of all triangles associated
with each particular zero and whose area-average is given by the ratio of the
two integrals. The square domain Dy has sides 2Ly where the cutoff scale
is taken to be an explicit function of the cutoff value for n = N as follows:
AN < Ly < Any41 and the square Dy is centered at the center of symmetry
1/2+4 40 of the Z(s) = Z(1 — s) function. Notice that the single square domain
Dy encloses (besides the triangles) exactly N pairs of zeros, N zeros with their
complex conjugates; i.e. a total of 2N zeros symmetrically located with respect
the horizontal axis. For this reason, due to this mirror symmetry under complex
conjugation, the square domain Dy is the same as the square domain D_ . The
zeros 1/2 4+ iAn41 live on the boundary of the square domain Dy = D_y and
are not counted.

After one has evaluated the triangle area-averages, which is how we assign
the statistical weights to each of the zeros, the next goal is to compute P(Ry)
the probability of finding a zero inside the region Ry in the complex plane. The
region Ry must not be confused with the original domain Dy used to define
the triangle area-averages in the first place. For example, we could take for
the region Ry a rectangle symmetrically distributed with respect to the critical
line, of area (2L1)(2L2) and take the double scaling limit: Ly — 0; Ly — oo
such that the area of those domains remains fixed: (2L1)(2L2) = A = constant.
As the rectangles Ry become more narrow and more elongated, they aproach
asymptotically the critical line 1/2 4 iy (while the width collapses to zero).

One can also envision not taking the double-scaling limit for the regions Ry,
but instead taking rectangular regions of increasing areas (2L1)(2L2) where the
width 2L is increased until it reaches the unit width of the critical strip while
its height 2L approaches infinity. These rectangular regions are useful because
they avoid intruding into the negative X-axis regions where the trivial zeros
s =—2,—4,...— 2n are located.

Naturally as the sides of the square domains Dy increase they will intrude
into those regions of the complex plane where the trivial zeros of {(s) are located.
At this stage it does not matter how we choose the domain Dy to define a
triangle area-average associated with a zero 1/2+i)\,,, or for that matter, another
point in the critical line 1/2 + iy. It does not matter if this square domain Dy
intrudes into those regions where the trivial zeros live. What matters comes
afterwards when we define the regions Ry in the complex plane where we wish
to compute the probability that a zero is found. These regions Ry must be
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chosen appropriately so that they will not enclose areas where the trivial zeros
snp, = —2n + 10 are located. The best suited regions Ry are indeed rectangular
domains inside the critical strip, of fixed widths and increasinly larger heights.
Or with narrrower widths, such that in the asymptotic limit, the region R
collapses into the critical line 1/2 + iy.

To simplify our calculations, and to answer the question if the RH is true,
we shall take a simpler route and choose directly a region Ry given already by
a line interval in the critical line (instead of a rectangular domain of nonzero
width). In the large N limit the region Ry will coincide by definition with the
full critical line 1/2 + 4y.

The first step has already been taken when we evaluated the triangle area-
averages from the triangle-picking formula based on geometric probability, using
a single square domain Dy, at each time, with sides 2Ly and with cutoffs
AN < Ly = An+1. The second step to be taken after obtaining the area-average
associated with a given zero (A(\,; L)), and for that matter, associated with
all the points in the critical line (A(y, Ly)) whose y coordinates, at each time,
are bounded by —Ayy1 <y < Ayy1 is when we go ahead and ask what is the
geometric probablity P(Ry) to find a zero inside a region Ry given by a line
interval in the critical line (instead of a rectangular domain of nonzero width)
whose y-values are also bounded by the simliar conditions: —An4+1 <y < Anq1.

These regions Ry, whether they are line intervals in the critical line, or
rectangular domains of narrower widths and larger heights inside the critical
strip, do not contain the trivial zeros s, = —2n + ¢0. Since, the Hadamard-
Valle de la Poussin theorem states that there are no zeros in the vertical lines
whose real parts are 0, 1, this means that we do not have to worry about these
vertical line boundaries of the critical strip.

Therefore, the probability to find a zero in (all of) the critical line, i.e the
probability that the RH is true, is given by the N = oo limit of P(Ry)!. The
crucial question is: Despite that we have a well defined algorithm, as we will
show below, to define P(Ry), can we compute such large N limit of P(Ry)
with absolute certainty? If the N = oo limit of P(Ry) is unity this means that
the probablity to find a zero in the critical line is 1, and hence the RH is true.
If the probablity is not unity in the large NV limit, then the RH is false because
this means that there is a finite nonzero probablity of finding a zero outside the
critical line. We will return to this crucial issue below.

To verify the validity of this construction to the RH, we will apply firstly such
geometric probability techniques for the zeros of sinh(s) all of which we know lie
at equally-spaced intervals of 7 in the vertical (imaginary) Y-axis, s,, = 0+inmx.
Thus the location of the zeros of the sinh(s) behave exactly as the location of
the zeros of zeta. Both zeros live in (different) vertical lines irrespective of their
spacings. In Section 3 we showed why the sinh(s) function is also related to the
inner of products of eigenfunctions of (other) differential operators (which are
not self adjoint) obeying similar symmetry properties with respect the vertical
(imaginary) axis as the function Z(s) does with respect the critical Riemann
line. For this reason we can aply this probabilistic method to both the Z(s) and
sinh(s) functions to evaluate the triangle area-average:
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[ A(triangle)dz dy,
fdxldyl ’

where the 3 points coordinates, (x1,y1); (x2,y2); (z,y), in the sinh(s) case obey
the different relations s = s} + s2 = 0 + i3, (see Section 3):

(An(apn +i8y)) = (An (0 + inm))

(46)

T4+ =0=0= 10 = —x1,

Y2 — Y1 = Bp =nm = y2 = y1 + Bn = y1 +nm, (47)

the areas inside the integral are the absolute values of 1/2 times the determinant:

1 1
§|x1(2y1 —Bn)| = §|x1||2y1 — Buls (48)

this factorization of the absolute values facilitates the evaluation of the integrals
as the product of two integrals:

Ln Ly
/ |1’1|dl‘1 = 2/1’1(11‘1 = L?V? (49)
—Ln 0

and the y; integral of |2y; — (3, | must be split into two separate integrals:

Ly Bn/2 52
/ (2y1 — Bn)dyr — / (2y1 — Bn)dyr =2 (I" + L?v) : (50)
Bn/2 —Ln

Collecting all the terms stemming from the x1,y; integrals, including the extra
factor of 1/2 in front of the determinant, and dividing by the area (2Ly)? of
the square domain Dy of side 2Ly, one finally obtains the average area of all
the triangles associated with the given zero 0 4 i3, and which fall inside the
square domain of area (2Ly)?:

(ntui ) = 7 (%2 423 51)

we obtained, as expected, a symmetric function: (A, (—Bn;Ly)) = (A(Bn; LN))
which states that the statistical weights of any pairs of complex conjugates is
the same. The imaginary parts of the zeros of sinh(s) are: (3, = nm. These
square domain Dy = D_y of sides 2Ly have their centers located at the center
of symmetry 0 + 40, for the sinh(s) case, and contain N pairs zeros. The sides
2L are given by the cutoff scale: 2Ly = 2(N + 1)7 > 2N7 to ensure that the
single square domain encloses exactly N pairs of zeros, 0 + inm (and complex
conjugate) for those values of n ranging from 1,2, ...N.

Now that we have evaluated the average area of the triangles associated with
a given zero 0 + i3, inside a square domain of sides 2Ly and centered at 0 + <0
as an even function of the number 3, = n7 and the cutoff scale Ly = (N + 1),

18



we may compute the probability P(Ry) to find a zero in the region Ry in the
vertical Y -axis.

This is achieved by defining the P(Ry) once again in terms of geometric
probability, as the ratio of areas. Given the sequence of N triangle area-averages,
associated with the sequence of 0 + i31,0 + i(32, ...0 + i8N zeros, plus complex
conjugates, we shall take their discrete sum over the triangle area-averages eval-
uated at the N discrete number of pairs of zeros 0 + i3, (plus their complex
conjugates) and then divide by the integral of the continuous distribution of
area-averages [(A(y, Ln))dy associated with all the points in the Y-axis from
—(N + 1) <y < (N + 1)7. This integral can be written as:

_1 (VD y 2 2
I(RNy) = — =+ (N +1)"77| dy. (52)
4/ Ny L4

Therefore, the geomeric probability P(Ry) to find a zero inside the region Ry,
a line interval of length 2L in the imaginary axis, will be given by the ratio of

the areas:
N

Z <An><An(ﬂn; LN)>

=N
P(Ry) =" NiDn

(A(y; Ln))dy
—(N+1)7

(53)

Because all the zeros 0 + i3, are equally-spaced, the average separation (A,)
betwen consecutive zeros is 7:

N
<An> = % Z(ﬁn-ﬁ-l - 571) = W = 7. (54)

Notice that one can always scale all the zeros [, by dividing by 7, and in
doing so, the mean spacing is equal to 1. However, this will not be the case for
the average separation of consecutive Riemann zeros. The mean-spacing among
the zeta zeros; i.e the average number of zeros in a given interval is basically
the number of zeros divided by the size of the interval in the limit that N = oo.
Taking the interval to lie between [0, Ay] the mean-density of zeros in that
interval is approximately (to leading order) given by the celebrated formula:

1
N _>\N log >\N 1

{pn) = W %T =5 logAn. (55)
This is the place where random matrix theory overlaps with our geometric
probability (stochastic geometry) approach to the RH and perhaps the under-
lying reason why random matrix models are deeply related to the RH. As far
as we know this reason is not known, it was an empirical fact that the Mont-
gomery pairs correlation distribution of zeros agreed with Dyson’s results based

on random matrix models.
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By symmetry (complex pairs have equal statistical weights) we can just take
the sums and integrals from [1, N] and [0, (N + 1)x], respectively, since the
common factors of 2 cancel out in the ratio. Notice that the zeta function
¢(s) and the function Z(s) does not have a zero at the center of symmetry
s = 1/2 4 i0. In Section 3 we proved that the inner products (of different
eigenfunctions) is given by the function G(s) = sinh(s)/s that does not have a
zero at s = 0+ 40 (center of symmetry in this case) because G(s = 0+ i0) =
sinh(0)/0 = 1 # 0. Therefore, we can safely take the sums from 1 to N and the
integral from 0 to N + 1 in units of 7 without counting the point 04 40 (it lives
in the boundary of the region Ry).

The reader may notice that because the zeros of the function sinh(s) are all
equally spaced 3, = n7 in units of 7, and that the areas grow as n’m2, the large
N limit of the discrete sum is precisely given by the integral in the denominator
and the answer for P(Ry) in the large N limit is going to be 1. To show this,
we will sum the discrete series and perform the integral. The discrete sum

S(Ry) = %3 3 VZ (N + 1)2] , (56)

gives a straightforward result by simply summing the quadratic series:

N
NE@N +1)(N +1
6
n=1
o that 1 NE@N +1)(N +1
Swm:—ﬁ[( +)(+)+NW+Uﬂ:

4 24

1 24N(N+1)2+ N(N+1)(2N +1 1 26N2 + 25N

Zw3 (V+1) +24( +DEN + ):Zw3(N+1)76 ;4' N (58)

The integral (in units of 7, the basic cell size) in the denominator yields:

1 (N+1)7 y2
I(Ry) = —/ [— + (N + 1)27r2] dy =
0

4 4
1 5 [(N+1)3 g] 1 5 26(N + 1)?
1 [ 5 + (N +1) f47r(N+1) 51 . (59)
The ratio of S(Ry) and the integral I(Ry) is then:
26N2 4+ 25N 26N? + 26N N
P(RN) = = 1. 60
(Bn) = Sev+1z < 26Nt 1)F N1l (60)

The fact that the probability P(Ry) to find a zero inside the interval Ry is
less than unity is consistent because P(Ry) cannot exceed unity. In the N — oo
the quantity

P(RNHOO):

2 2
26N“ + 25N < N ) S, (61)

26(N+1)2  \N+1
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since the leading powers N? dominate, and as expected the P(Ry) to find a
zero in the large N limit, when the measure of the region Ry goes to infinity,
is exactly equal to 1 for the sinh(s) case. Concluding: the probability to find
a zero in the imaginary axis is unity as expected. The probability to find a
zero outside the imaginary axis is zero. The next question to ask is what is the
probability to find m zeros in the imaginary axis?. The answer is given by the
large N limit of:

lim P(Ry)™ — 1™ =1 (62)

N —o0

as expected even when m = oc.

A very important remark is now in order. One could as well have computed
the numbers P(Ry) by taking for the increment A = 7, the values of A =1
instead, to compute the ratios of the sums » (A,) divided by the integrals
J{A(y))dy. In this case what one would have obtained in the large N limit
is the mean-density of zeros of sinh s; i.e the number of zeros per unit length
which is equal to (p) = 1/=.

This result makes perfect sense because one has one zero in the interval
[0, 7]; two zeros in the interval [0, 27];...N zeros in the interval [0, N7]. Hence,
the mean-density of zeros is N/(Nw) = 1/7. By multpliying the mean-density
by the mean-spacing between zeros (A) = 7, one recovers back P = (1/m)7 = 1.
We shall return to this issue of calculating the mean-density of zeros for the ((s)
below in connection to the evaluation of the probability to find a nontrivial zeta
zero in the critical line.

It is essential to emphasize that it would be meaningless to try to derive
the probability by comparing the measure space of the discrete number of zeros
(zero Lebesgue measure) with the nonzero measure of the real line. We are not
asking what is the probability (zero in that case) that upon throwing a dart
it will strike a zero! What we have done is to count the number of ways in
which one can generate a zero from the inner products of two states associated
with a pair of complex numbers, s1,s3 and then divided by the number of all
possible pairings inside a given region and taking the size of those regions to
infinity when we take the large N limit. We performed the counting by means
of geometric probability; i.e by computing the area-averages of an infinite family
of triangles associated to each point s in the critical lines, whether it is a zero
or not.

The reader may ask the question: Do the numbers P(Ry) depend on the
shape of the domains Dy used to compute the triangle-area-averages? There is
no reason why numbers (A(A,; Ly)) (square domain) should be the same as the
numbers (A(\,,; L1, Lo)) obtained for a rectangular domain of area (2L1)(2L2),...
What one should expect is that the large N limit of the two different se-
ries P(Ry), based on different domains to compute the triangle area-averages,
should be the same. Both series should converge to the same large N limit. If
the large NV limit depends on the shape of the domains used to compute the
triangle area-averages this will be a great surprise, which implies that the large
N limit is not unique. We are assuming that the large N limit is unique and
truly independent of the shape of the domains, however, this has to be proved.
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The large N limit of the algebra su(N) is basis-dependent. In one particular
basis, Jens Hoppe [34] long ago has shown that su(co) algebra is isomorphic to
the infinite-dim algebra of area-preserving diffs of a sphere.

Therefore, concluding the calculation for the zeros of the sinh(s) function,
the probability to find a zero (and a discrete infinity of zeros) of the sinh(s)
function in the region R, given by the imaginary axis —oo < y < +o0 is indeed
unity as expected. This result occurs because all the zeros are equally spaced
in units of 7, therefore the continuous integral matches the discrete sum in the
N = oo limit.

Let us return to the computation of the probabilities P(Ry) to find a Rie-
mann zeta zero in the region Ry corresponding to a finite interval in the critical
line 1/2 + iy given by —An41 <y < Ay41. Due to the symmetry under com-
plex conjugation that requires that the statistical weights for any pair of complex
conjugates be the same, we can divide the line interval in half and focus soley in
the upper portion of the critical line. Because the imaginary parts of the zeta
zeros A, are not equally spaced as the zeros of the sinh(s) function, one cannot
conclude with absolute certainty that the integral in the denominator matches
precisely the discrete sum in the N = oo limit.

In the Riemann case, due to the fact that the mean-spacing of the zeros is
highly non-trival, it is more convenient to study the large N limit of the ratios of
the quantities studied above by setting the A = 1 which will furnish the density
of zeros D(Ry) expressed in terms of geometric probability theory as follows:

N

)\2
2 Zn

D(Ry) = —5—

AN+1 ) y2 !
f; ()
0

There is no reason whatsoever why, a priori, without doing the full calcula-
tions, the numbers D(Ry), in the large N limit, will coincide with the mean-
density of zeta zeros!. The mean number-density of zeta zeros in the interval
[0, An+1]; @-e. the number of zeros per unit length (in that interval) is given (to
leading order) by the celebrated formula:

(63)

N+1 logAnit1
)‘N+1 2T '

(pn+1) = (64)
From which one can infer that the mean-spacing between the zeros in the

interval [0, An41] is:

- >\N+1 2

CN+1 logAngi
Hence, the probability to find a zero in the region Ry given by the interval

[0, An+1] is just the density D(Ry) (obtained from geometric probability theory)

times the average spacing (Ay) between zeros in that interval,

27D(RnN)
1og )‘N+1 ’

(An) (65)

P(Ry) =D(Rn)(AN) ~ (66)

22



The large N limit of P(Ry) is denoted by P. If P = 1, then the RH is true.
If P < 1, then the RH is false since there is a nonzero finite probability to find
a zero outside the critical line. In the sinh(s) we found that the large N limit
of the density of zeros D(Ry) (obtained from geometric probability) was 1/.
Since the average spacing (Ay) = m, for all values of N, then P = (1/7)(Ayn) =
(1/m)m = 1.

Notice that it is not necessary to write the higher order corrections of the
mean-density of zeta zeros given by the formula,

AN AN AN
N = 5 log 5 o + O(log An), (67)
because we are interested for the time being in the leading terms only since we
are studying the behaviour of P(Ry) in the N = oo limit.

In essence what this geometric probability approach seems to suggest is
that it is sufficient to study the behaviour of the zeros in the critical lines
because they seem to encode global information about the algebraic behaviour
of the functions sinh(s) and {(s) in their critical strips. Not unlike index theory
(K theory) whereby the number of zero modes of a Dirac operator encodes
topological information of a manifold.

The reader may ask how do we handle the fact that we have a truly random
sequence (series) of numbers P(Ry) = D(Ry){An)?. To know all the infinite
random numbers A, all the way to infinity is not a feasable task. In addition
there is no law that would allow us to write a relation between A,, and the label
n of the series, like it occured with 3, = nm in the sinh(s) case. Despite this
intrinsic randomness how can we decide with full certainty whether the RH is
true with probability one? Do we have another example of what has been called
a random truth that cannot be proved, in the spirit of Godel’s undecidable
propositions (incompleteness theorem). Chaitin has made some arguments in
favour of this idea of randomness in connection to the RH [35].

It is very important to emphasize that we have a well defined algorithm to
generate the random numbers P(Ry) because we know precisely the functional
form of the triangle area-averages. Since the probability P(Ry+1) to find a zero
in a region Ry 1 should be greater than the probability P(Ry) of finding a zero
in a smaller region Ry, we can ascertain that the random numbers (fractions)
should be increasing. What we don’t know is the infinite values of the zeros
1/2 4 i)\,. The way to handle this dilemma to get a flavor of the behaviour of
the increasing sequence of random fractions P(Ry) for N = 1,2, ...00 is to go
ahead and use the tables of the known zeros. A table of 10?2 zeros has been
provided by Odlyzko.

For P(Ryn) — 1 to occur in the N — oo limit, one has to study the behaviour
of the fractions P(Ry) < P(R3) < ... < P(Ry) and try to infer their behaviour
in the large N limit by induction. In particular, to find out the scaling behaviour
of the sequence of random numbers P(Ry). When N — 107N, the interval
domain Ry given by [0, An+1] spanned by the N + 1 zeros is replaced by the
much larger interval Rygvn given by [0, A1gvn+1] spanned by the 107 N +1 zeros.
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Therefore, it is very important to find out the scaling behaviour of the frac-
tions,
P(Ripon) = 10MNY P(Ry). (68)

where the scaling exponent p depends on v and N in general.

The reason we should study the scaling behaviour of the fractions P(Ry) de-
spite the random nature of the zeros is because there may exist a quasi-periodic
long-range order. Wolf [36] has studied the multi-fractal patterns in the prime-
numbers distribution so one would expect some sort of self-simililarity (although
not strictly so) in the scaling behaviour of the random fractions P(Ry) because
the distribution of zeta zeros is tightly connected to the distribution of primes
resulting from the Hadamard-Euler product expansion of the zeta function.

One of us suggested ! a while ago that there must be a deep reason why the
spectral properties associated with the binary Fibonnaci sequence of numbers
(the hallmark of quasi-periodic long range order, golden mean route to chaos,
etc...) is related to the function sin?(rz)/(wx)? which also turns out in the
Montogomery-Dyson pair-correlations of the imaginary parts of the zeta zeros
in random matrix theory.

For this reason, in Section 6 we will study a fractal SUSY QM model (fractal
Schroedinger equation) with a Weierstrass potential, such that the shape of the
potential is a fractal curve of dimension D = 1.5 and which generates all the A,
for its spectrum. This is nothing but the implementation of the Hilbert-Polya
idea to solve the RH. The fractal dimension D = 1.5 of the Weierstrass potential
is precisely the value that is connected to the 1/f noise spectrum, as we shall
see. Long ago Franel-Landau proved that the RH is related to an arithmetic
statement connected to the Farey sequence of fractions [23], and not suprisingly,
it is the scaling behaviour of the fractions P(Ry) that we wish to analyse to be
able to infer whether or not the large N limit goes to 1 and which in turn could
give us an anwswer, with full certainty, whether the RH is true or false.

The fact that we know that the P(Ry = 00) is unity with absolute certainty
for the zeros of the sinh(s) function, and whose location along the imaginay
Y-axis mimics perfectly the behaviour of the Riemann zeros in the critical line,
corroborates that evaluating the geometric probability whether the RH is true
or not, is the right procedure to take and the right question to ask.

If the P(Ry = o0) to find a zero in the critical line 1/2 + iy happened
to be equal to 1, the probability that the RH is true would have been unity,
because the probability to find a zero outside the critical line would have been
zero. The probablity to find m zeros in the critical line would have been simply
P™ =1" =1, even when m = oo.

However, if P(N = c0) < 1, there would have been a finite nonzero proba-
bility of finding a zero outside the critical line and this would have implied that
the RH is false. For rigorous work concerning the plausible reasons to doubt
the RH see Ivic [37]. In this negative case scenario, one should have computed
the probability that the zeros fall inside a certain rectangular domain within
the critical strip instead of line intervals.

LC.C Perelman to Matthew Watkins
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For example, lets assume that there is another parallel vertical line of zeros,
and its mirror line in the left of the critical line, besides the critical line of zeros.
One would have required to perform a double summation, double integral over
those domains Dy in the complex plane that contain portions of those three
vertical lines of zeros, to find the triangle-area averages, and afterwards to com-
pute numerically the probability P(Ry) of finding a zero inside a rectangular
region Ry as the ratios of the known double discrete-sums/double-integrals and
take the N = oo.

The large N limit of this probability should be 1 consistent with the fact that
we have assumed a priori that all the zeros fall inside the prescribed rectangular
domain, and, of course, that we have a complete knowledge of where they are!.
If the probability in the large N limit were not 1, then there would be a finite
nonzero chance of finding a zero outside the prescribed region, and so forth...
until we find the ultimate rectangular region of zeros (when the probability
becomes exactly unity in the large N limit) which encloses all the nontrivial
ZEros.

Concluding: the crux of this work is based in writing the Riemann fun-
damental function Z(s) in terms of “inner” products, (¢, |ts,) = (Ws, |t0s) =
Z(s), or pairings among two complex numbers $1,s2 to give a third number
s = s + s3 — 1/2, such that S(s1,s2) = Z(s) to be more precise. Then we
proceeded to “count” in how many ways one can generate a zero s from the two
complex numbers s1, so. This is achieved via geometric probability theory that
allows us to find the explicit functional form of the triangle-area-average func-
tion (A(y; Ly)) for any point in the critical line, and, of course, A, (A\n; Ln),
associated with the area-averages of the infinite number of traingles whose 3
vertices are located at the triplet of points (s1, $2,s). Finally, these triangle-
area-averages are employed to evaluate the probability P(Ry) of finding a zero
inside a finite interval Ry of the critical line which, in the N = oo limit, yields
the net probability in finding a zero in the whole of the critical line.

Despite the fact that a very large number of Riemann zeros is known, en-
abling us to get a feeling of the behaviour of the fractions P(Ry) for very large
values of N, this does not reassure us with full certainty what is the behavior
of P(Ry) for other much, much larger values of N due to the random values of
the zeros. Despite this randomness in the values of the A,,, and consequently,
in the fractions P(Ry ), this however does not preclude the existence of a quasi-
periodic long-range order whose qualitative arguments in Section 5 allow us to
study the behaviour of the random series P(Ry) in the N = oo limit.

Concluding, we are going to have three scenarios in the large N limit:

1. Optimistic scenario P = 1, the RH is true, so the probability to find a
zero and m zeros in the critical line is 1 = 1™ = 1, even when m = oo.

2. Surprising scenario: P < 1, the RH is false since there is a finite nonzero
probability of finding a zero (in mutiples of four) in the vertices of one rectangle,
outside the critical line.

3. Shocking scenario: Undecidable answer due to an intrinsic element of
randomness, we are unable to compute the N — oo limit of P(Ry), due to our
lack of knowledge of all the Riemann zeros, that would have provided us with a
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satisfactory answer, with full and absolute certainty, whether the RH is true or
not.

This undecidable case may occur, for example, when there is a zigzagging of
the numbers P(Ry) about a known curve which asympotically aproaches 1 with
absolute certainty. One could have an scenario of monotonically increasing frac-
tions P(Ry) such that half of the time (on average) these numbers fall sligthly
above the asymptote, and half of the time (on average) they fall slightly below
the asympote, while still maintining the monotonously increasing condition in-
tact. One has a zigzagging in a staircase manner where half of the steps cross
the asymptote, and the other half of the steps remain below it. The horizonal
size of the steps increases sharply when we study the behaviour of the fractions
P(Ry) when the number N is increased in powers of 10, for example. The
vertical increase of the steps is not sharp for larger values of N if these steps
are going to zizag (up and down) very closely about the known asymptote. Not
surprisingly, we expect to encounter some fractal-like scenario (Brownian-like
zigzagging) in the random series P(Ry).

5 Numerical properties of the random series P(Ry)
In this section we shall evaluate the fractions:
P(Ry)) < P(R2) < ...< P(Ry) < ... < P(Riovn) < ... (69)

based on the table of zeros provided by Odlyzko.

Since the region R; is contained in Ro, which in turn is contained in R3...and
so forth... it is clear why the fractions P(Ry) must be increasing. The question
is how do these fractions increase and whether the large N limit is 1 or not; i.e.
whether the probability of finding a zero in the critical line is unity or not, and
hence whether the RH is true or not. Let us focus on the numerical experiment
we are proposing to verify if the RH is true or not and evaluate the sequence of
numbers P(Ry) (that ought to be increasing as the size of the regions increases)
for those regions (intervals of te critical line) associated with the values of N
that jump in powers of 10.

So we start by computing the values for the sequence of numbers associated
with the table of zeros provided by Odlyzko: N = 10',102,...10?2. Notice that
to compute those 22 numbers P(Ry) from that huge list of 10?2 zeros, is a
tremendous task to begin with! Let us suppose after enough time and patience
that we have the meager list of 22 numbers associated with the probabilities
to find a zero inside the regions: Rig1, Rig2,...R1g22 associated with the first
known 10?2 zeros.

Now we have to study what is the behaviour of that list of 22 numbers. If
they seem to converge to 1, is the convergence fast or slow?. How can we be sure
with absolute certainty that they will convergence to 1, and not to 1 —e€?. Since
the outcome of this numerical experiment would require the full knowledge of
the infinity of zeros in the critical line, which is an unfeasable task, all we can
say is that if we truly observe a convergence to unity, for larger and larger values
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of N all the way to N = 10?2, and past it, is that the RH is most likely to be
true. The scaling (multi-fractal) properties of the numbers P(Ry) surely will
be very helpful to study the convegence properties of the random series which
may have a quasi-periodic long range order (or may not). However, if we don’t
observe a clear convergence to unity, for larger and larger values of N, then
there is probability € > 0 that the RH is not true.

For this purpose we evaluate the numbers P(Ry) as functions of N and
display the graphs in Figure 4 for the first N = 10000 zeros of the tables of
Odlyzko.

5.1 A relation to random matrix theory and quantum
gravity

Instead of computing the geometric probability based on area-averages of a
continuum of triangles associated with a given zero, one could start by writing
down the table of pairs of random complex numbers as follows. Given a list of
N random complex numbers:

NN

associated with the first element s, and the list of N random complex numbers:
1) @ ()

85,85, ...85
associated with the second element s, one then constructs the table of N2
random complex entries given by the N x N complex matrix (not necessarily
Hermitean) obtained from the composition rule

$=81® 82 =587+ 82— 1/2.

One can repeat this procedure for another list of N pairs of numbers (s1, s2)
and in this fashion one constructs an infinite ensemble of N x N random complex
matrices. Once can then find the (complex) eigenvalues 71,72, ...7n for each
matrix within the ensemble, and ask what is the probability that there is a zero
1/2 + iX,, among that family of complex eigenvalues.

The large N limit of this procedure should give us a measure of the proba-
blity to find a Riemann zeta zero from the inner products of the pairs of numbers
S1, 82. Since this method is based on a countably-finite combinations of pairs, it
must not be confused with the evaluation of the geometric probability that was
based on the computation of triangle-area averages involving integrals (contin-
uum). Therefore, we could postulate why random matrix theory, in the large N
limit, could be just a discretization approximation to the geometric probability
approach in solving the RH. This discretization approach to the computation
of triangle-area-averages based on random matrix theory is related to the large
N limit in discrete random triangulations in quantum gravity [39] and to the
large N matrix models in two-dimensional string theory when the Feynman
path integral is approximated by discrete (regularized) sums. The relevance of
the zeta function in phase spaces. Moyal star products and the evaluation of
path integrals in QFT has been discused by [40].
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6 A fractal supersymmetric quantum mechani-
cal model

The Hilbert-Polya proposal to prove the RH is based on the possibility that the
imaginary parts of the nontrivial zeros of zeta are the real eigenvalues of some
unknown Hermitian operator [5]. If the nontrivial zeros of the Riemann zeta
function are given by s, = 1/2 + i),, and if there exists a suitable Hermitian
operator T, whose real eigenvalues are \,,, then the RH is true. Hence, the zeros
sp, are consequently given the complex eigenvalues of the operator 1/2 + il

Before constructing the fractal SUSY QM model to prove the RH based on
the Hilbert-Polya proposal, let’s consider the analogous problem (almost trivial)
for the sinh(s) function (the HSRH) described in Section 3. The SUSY QM
model involves two isospectral operators H(*) and H(~) which are defined in
terms of the so called SUSY-QM potential ®(x). Our ansatz for the SUSY-QM
potential associated to the HSRH is given by:

T
O(z) = —. (70)
2
Note that the SUSY potential is real and it is consistent with the SUSY require-
ment that ®(x) is antisymmetric in  in order to vanish at the origin so that
®2(x) is a symmetric function with a minimum at x = 0:

P2 (z) = . (71)

Using such SUSY potential ¢ the following SUSY Schrodinger equation as-
sociated with the H+) Hamiltonian [41], is:

9 _ 9 (H) () — \(H) ()
(5o +2) (-5 +2) 670 = AP0 (@), (72)

where we choose the natural units A = 2m = 1. The isospectral condition of

the SUSY-QM model requires that Agj) = )\%7) =\

The eigenfunction w;ﬂ (x) associated with the Schrodinger equation for the

harmonic oscillator-like potential is the usual Gaussian times a Hermite polyno-
mial and has for corresponding eigenvalues \,, = iw(n+1/2) where the natural
frequency is w = (k/m)'/2.

The potential V(x) of an ordinary QM problem associated with the SUSY-
QM model is given by (70):
d®(x) ] w2 T

VE(z) = [@2(30) + — | = —r?+ 3 (73)

The above potentials V*(z) correspond to a harmonic oscillator, whose nat-
ural frequency is w = (k/m)Y/? = (72/2m)Y/? = . shifted by an additive
postive/negative constant, respectively, and the energy eigenvalues are given by
An = m(n + 1) and 7n respectively. In order to have the isospectral condition
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of SUSY QM )\%'H = )\%_) = )\, we must have two different values of n,n’ such
that n’ +1 = n. This immediately determines the corresponding eigenfunctions
of the two harmonic oscillator partner Hamiltonians.

As we have discussed earlier, the non trivial zeros of the function sinh(z) are
located at z = 0+ inm, for n = 0, %1, +2... which is consistent with the equally
spaced eigenvalues of the harmonic oscillator QM problem. This means that it
is possible to find an ordinary QM Hamiltonian related to a SUSY-QM model
and such that their eigenvalues coincide with the imaginary part of the zeros
of sinh(z). This is the Hilbert-Polya implementation to prove the HSRH in a
nontrivial fashion.

Next, we formulate an inverse eigenvalue problem associated with equation
(72), where the A,,’s are to be taken as the imaginary parts of the non trivial ze-
ros of our test function sinh(s). The quantization conditions using the fermionic
phase path integral approximation, when aplicable, (the SUSY-QM analog of
WKB formula in QM) are based on the CBC formula, the Comtet, Bandrauk
and Campbell formula [41]) which reads, after using the natural units & = 2m
= 1, so that all quantities are suitably written in dimensionless variables for
simplicity,

T T 2,2\ 1/2
In(:cn,)\n;a)z4/ da [An7®2(x)}1/2:4/ d (An” ° =,
0 0

4
(74)
where we take the positive values n = 1, 2,... and the \,, are the imaginary parts
of the nontrivial zeros of sinh(z). The factor of four in equation (74) orginates
because one is integrating over a full cycle. The integration between 0, z,, rep-
resents a quarter of a cycle. Due to the fact that ®2(z) is an even function of
x, in order for supersymmetry to be maintained, the left/right turning points

obey are symmetrically located: I(Ln) = —acgl) for all orbits, and for each n =

1, 2,... We define x,, = xglf).
The second set of equations are provided by the location of the turning points
of the bound state orbits and which are defined by:

P =a,) =N\ =7n; n=1,2,... (75)

The precise location of the turning points is what is needed in order to evaluate
the previous definite integral (the CBC formula) and yield the exact values mn.

The equations (73,74, 75) are the ones we are looking for. The (right) turning
points x,, are defined in terms of all the \,, and the well defined CBC formula
is the one which involves the zeros A,, associated with the SUSY potential ®(x).

Now let us turn to the fractal SUSY QM problem associated to the Riemann
Hypothesis. Armitage [42], considered that the RH can be expressed in terms of
diffusion processes with an imaginary time. In this way the Hamiltonian of some
QM system could be constructed, which in turn implements the Hilbert-Polya’s
original program.

A numerical exploration of the Hilbert-Polya idea was recently done by Wu
and Sprung [12]. The potential found in [12] has random oscillations around an
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average value, the average potential allowed them to construct a conventional
Hamiltonian whose density of states coincides with the average distribution of
the imaginary parts of the Riemann’s zeta non trivial zeros. The fluctuations
are necessary in order to make the individual eingenvalues fit a set of such zeros
within a prescribed error bound. They found that the imaginary parts of the 500
lower lying nontrivial Riemann zeros can be reproduced by a one-dimensional
local-potential model, and that a close look at the potential suggests that it has
a fractal structure of dimension D = 1.5. The references [43, 36, 44] deal with
fractals (fractal strings) and the Riemann zeta function.

One of us [20], was able to consider a p-adic stochastic process having an
underlying hidden Parisi-Sourlas supersymmetry, as the effective motion of a
particle in a potential which can be expanded in terms of an infinite collection
of p-adic harmonic oscillators with fundamental (Wick-rotated imaginary) fre-
quencies w, = iln p (p is a prime) and whose harmonics are w,, = iln p".
Here, inspired in a work by Wu and Sprung [12] the p-adic harmonic oscilla-
tors are substituted by Weierstrass functions. In this way, we propose a way to
construct a Hilbert-Polya operator by using (fractal) SUSY-QM arguments.

In SUSY-QM two isospectral operators H(+) and H(~) are defined in terms
of the so called SUSY-QM potential. A SUSY-QM model was proposed in [20]
based on the pioneering work of B. Julia [45], where the zeta-function and its
fermionic version were related to the partition function of a system of p-adic
oscillators in thermal equilibrium at a temperature 7. The fermionic zeta-
function has zeros at the same positions of the ordinary Riemann function plus
a zero at 1/2 4 04, this zero is associated to the SUSY ground state. See also

the reference [14]: ) oy
2= C(st) - zn: Mnil ’ (76)

where p(n) is the Mobius function.

Here we consider a fractal potential, defined by a set unknown phases, to be
determined after using the CBC formula, associated with a Weierstrass func-
tion, continuous but nowhere differentiable. A fractal SUSY-QM Hamiltonian,
using fractional derivatives, can be constructed in principe, whose eigenvalues
coincide with the imaginary parts of the nontrivial zeros of the zeta, A,,. The
fractal dimension of the potential is D = 1.5 and the sought-after phases will
be determined by solving the inverse eigenvalue problem via the CBC formula..

Our ansatz for our fractal SUSY-QM potential is based on the Weierstrass
fractal function, continuous and nowhere differentiable functions.

N
W(z,v,D,0m) =Y PeTeE s R (77)
n=0 v

n are integers, the powers 4™ are the corresponding set of frequencies and the
v, are the sought-after phases. The expansion (77) is convergent if 1 < D < 2
and v > 1. For these values of the parameters the function W is continuous
but nowhere differentiable and has D for fractal dimension [46, 47]. One could
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use for the frequencies suitable powers p™ of a given prime p number, however,
we must study the most general case and have powers 4™ for all real values of
v > 1.

The aim is to relate the SUSY potential-squared ®2 to the fractal function
W (x,7v, D, a,) defined before. The choice for the ®?(x) expression that ap-
pears in the fractal version of the CBC formula will be comprised of a smooth
part given by the Wu-Sprung potential Viys(z) plus an oscillatory fluctuating
Weierstrass part:

B*(z) = Vis(z) + %[W(x, Dy, cm) + W=, Dy, cm) + .cl + b9, (78)
where we have symmetrized the function W (x, D, ~, o) with respect to the x
variables and taken the real part by adding its corresponding complex conjugate
(cc). An additive constant ¢, has been included also in order to have a vanishing
®? at the origin + = 0. Supersymmetry requires that the ®2 is symmetric and
vanishes at the origin.

In [12] it was shown that the smooth value of the potential Viyg can be
obtained as solution of the Abel integral equation. The Wu-Sprung potential
Vivs(z) is given implicitly as:

VO1/2

v 1/2 _1)1/2
SL':I'(V) _ - |:(y1)1/21nF<;2+y1/21ny +(y )

Y=y 1)

where the rescaled variable is y = V/V,,, and V,, = 3.10073 .
With the SUSY potential ® at hand one may construct the following SUSY
Schrodinger equation associated with the H(T) Hamiltonian [41],

(79)

(D(B) + q;) (_D(B) + q;) w7(L+)(x) — )\£l+)w7(1+)(30)7 (80)

where we set h = 2m = 1. The isospectral condition of the SUSY-QM model
requires that )\%Jr) = )\%7) = Ap. See in [48] an investigation on fractional
Laplacians, and in [49] on vector calculus in fractal domains.

The fractal character of the SUSY QM model suggests that equation (80) is
actually an stochastic equation. Instead of the usual derivative d/dx we should
use the Riemann-Liouville definition of the fractional derivative, as follows,

— 00

where 0 < 3 < 1. Similarly, the fractional integral of order ( is

D(*ﬁ)F(t):F(lﬁ) / i £ i/t;i_ﬁdt’, (82)

—0Q0

where 0 < 3 < 1. Notice that the lower limits of integration have been chosen
to be —oco. In general these choices may vary.
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Several remarks are in order at this point. Firstly, the definition of the
fractional derivatives (81, 82) is not unique. It depends on the lower limits of
the integrals. Rocco and West chose —oo for the lower limits. Secondly, the
fractional derivatives do not obey the Leibniz rule. Therefore: D?(fg) is not
equal to fDPg + gD? f which implies that the fractal SUSY QM equation (80)
is highly non-trivial because one cannot longer say that the potential can be
written naively as ®2 + DP?(®). Thirdly, due to the conditions on the parameter
B: 0 < B < 1 in the definitions of fractional derivatives (81, 82) to ensure
convergence, we cannot take the naive smooth limit 3 = 1 in the fractal SUSY
QM equation (80) and expect to recover the ordinary SUSY QM equation.

For these three reasons we have not proposed here to naively factorize the
ordinary Schrodinger equation in ordear to find the corresponding (smooth)
SUSY QM model associated with the smooth Wu-Sprung Schrédinger equation
and then perturb it by adding the Weierstrass potential. This would have re-
quired also to solve the differential equation: Viyg = @?mooth—i—D@ smooth, that is
highly non-trivial due to the non-analytic nature of the Vj;rs potential. We have
done something else which is to write directly the fractal SUSY QM equation
(80) in the form given above, instead of factorizing the ordinary Schroedinger
equation studied by Wu-Sprung. This latter procedure differs from the former
leading to different SUSY QM equations for the three reasons stated earlier.

It is very important to notice this difference and that we cannot take the
naive smooth limit § = 1 of (80) in order to arrive at an ordinary SUSY QM
equation because the fractal derivatives (anti-derivatives) require the condition
on the parameter 0 < 8 < 1 to avoid divergences. This explains why we
constructed the ®2 as shown in (78) and then proceeded to use the fractional
analog of the CBC formula (83).

With these ingredients we are prepared to manage the inverse eigenvalue
problem associated with equation (80), where the A,’s are to be taken as the
imaginary parts of the non trivial Riemann zeta zeros. We proceed with our
ansatz by showing why 5 = d = D/2 and D = 1.5. This choice is justified based
on the fractal dimension of the Wu-Sprung potential of the order of D = 1.5
using the first 500 zeros. The reason why 8 = d = D/2 = 3/4 is due to the
fact that the two terms which define the fractional (fractal) operator D*) 4 &
in (80) must have the same fractal dimension. If the fractal dim(®) = d =
dim(D®) = B, according to the properties of D(®) given in [47], if the fractal
dim(®) = d, then dim(DP®) = B+ d = 23. Similarily, for the anti-derivative
dim(DA®) = —f + d. Hence, one finally has that the fractal dim (®2) =
2d = f+d = 28 = D. From which one infers that § = D/2 = 3/4 and
it satisfies the required condition for the order (8 of the fractional derivative,
0<p<l.

Therefore, the quantization conditions using the fractal extension of the
fermionic phase path integral approximation (the CBC formula) are:

1 T >\n _ @2 / 1/2
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where 8 = D/2 = 3/4 and n = 1, 2,... and A, are the imaginary parts of
the nontrivial zeros of zeta. ®2(x, D) is an even function of = so the left/right
turning points: x%n) = —xgl) for all orbits, for each n = 1, 2,... We define
Ty = xgl).

The second set of equations are given by the definition of the turning points
of the bound state orbits:

O (x,) = Ap; n=1,2,... (84)

So, from the three sets of equations (78,83,84) we get what we are looking for,
the relationships among the phases, a,,, the (right) turning points x,,, and the
imaginary parts of the zeta zeros A,.

At this stage is important to say a few words of caution about the normal-
ization of the \,’s. Wu and Sprung studied their QM Schrédinger equation with
a fractal potential based on the mean-spacing distribution of the zeros being set
to unity. This means that the A,’s to be used in the CBC formula should be
properly normalized as follows,

1
An — M\, log \,,.
— om og (85)

Having said this we can proceed with the determination of the parameter
~ > 1 (the frequencies of the Weierstrass function are 4™) will come into play.
One still has the freedom to vary such parameter at will. This parameter can
be fixed through an optimization procedure. From the formulae above, one has
a one-parameter family of phases a,, which depend on the values A, as well as
the parameter v > 1. One must go back to the original fractal SUSY QM wave
equation to ensure in fact that the SUSY potential ® reproduces precisely the
original A, for the eigenvalues!. The error terms will depend on the different
choices of v. The minimization of the error terms should select, in principle,
the optimum choice for v > 1 compatible with the SUSY QM wave equation. It
would be intriguing to see if v = 1+ ¢ = 1.618, the inverse of the golden mean,
since the golden mean appears in the the theory of quantum noise related to
the RH [17].

By “fractal” SUSY QM model one means a factorization of a Hamiltonian
into two products of operators involving fractional derivatives of irrational order.
A model of fractal spin has been studied by da Cruz [21]. Our model must not
be confused also with those involving fractional supersymmetries in the string
literature.

To conclude, we have a well defined extension of the CBC formula based on
a fractal SUSY QM model, that gives a direct one-to-one correspondence among
the imaginary parts of the zeros \,, and the phases a,,. This procedure defines
the fractal SUSY QM model which yields the imaginary parts of the zeros of zeta
implementing the Hilbert-Polya proposal to prove the Riemann Hypothesis. It is
warranted to see if the statistical distribution of these phases o, has any bearing
to random matrix theory (the circular unitary random matrix ensemble) and
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the recent studies of quantum phase-locking, entanglement, Ramanujan sums
and cyclotomy studied by [50].

The eigenvalue problem for the Ht) Hamiltonian can be reduced to diag-
onalize an infinite matrix, whose matrix elements can be easily obtained once
a convenient basis is found. This matrix involves an infinite set of unknowns
in order to have the Riemann’s zeros as eigenvalues. A numerical evaluation
for each convenient truncation of the matrix is possible. One concludes that
the phases of the Weierstrass fractal function appearing in the definition of the
®2(x), namely the square of the SUSY-QM potential, eq. (78), oy, are only
approximately found by this method. However this approach has the advantage
to give us some clues about the nature and the precise expression of the (square
of) SUSY-QM potential. Of course equation (80) could, in principle, be numer-
ically treated following numerical procedures analogous to those used in [12] to
give values of the unknown phases «,, within prescribed error bounds.

7 Concluding remarks, 1/f Noise

In this conclusion we should add the relationship of the Weierstrass function
with the Riemann Hypothesis and the 1/f noise. We wish simply to show to
why the potential that reproduces the zeta zeros is deeply connected with the
theory of 1/ f Noise. Here is the simple proof. The amplitudes of the Weierstrass
function are given by

,yn(2—D) (86)

and the power is proportional to the square of the amplitude and goes as
—2n(2—D)
~ .

Because the frequencies of the Weiersrass function are given by f,, = ~™, this
means that the power spectrum falls as f,, 22-D) Since the fractal dimension
of the Weierstrass function (potential) is D = 1.5, we conclude that one has
trully 1/f noise because f~2(2=1:5) = 1/f. This concludes the simple proof. See
more on 1/f noise in [51].

Thus, the zeta zeros are connected to the 1/f noise va the fractal potential
based on a Weierstrass function of fractal dimension D = 1.5. We believe that
the fractal SUSY QM model, once the optimum value for amplitude factor
is known, has a great chance of truly reproducing the zeta zeros, and proving
the RH, by simply establishing a one-to-one correspondence among the values
of the infinite phases of our Weiertrass function with the zeta zeros.

The equations that yield such correspondence are explictly written in the
fractal analog of the CBC formula (83) and after using (84). Berry and Lewis
[46] have studed in detail the properties of the Weierstrass-Mandelbrot function,
in particular the stochastic behaviour of the phases as well as the behavour for
different values of the fractal dimensions and the v factors. See also [52]. The
author [53] has discussed the relations among the Riemann hypothesis, Levy
flights and fractal random Walks within a probabilistic framework where the
Weierstrass function appears.
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Figure 2: The dots represent generic zeros of the (. The crosses represent generic
states orthogonal to the reference state 1/24 0i. The numbers 3/4 —z/2 —iy/2,
etc, are the arguments of Z appearing in the orthogonality relations between
states orthogonal to the reference state. Due to the functional equation of the
Riemann zeta-function, these arguments are just the average values between
1/2 4 0i and those orthogonal states. Here we are referring the particular case
k=1,1=4.
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Figure 3: The dots represent generic hypothetic zeros of the (. The crosses
represent generic states orthogonal between them. Here we are referring the
particular case a =1, b = 0.
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Figure 4: Probability of finding a zero of the Riemann ( function in the region
Ry as a function of N. (a) Calculated by using the zeros s, from n = 1 to
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