RED BOOK PHYSICS

How Jung's Red Book Archetypes connect with E8-Cl(16) Physics

Frank Dodd (Tony) Smith, Jr. - 2018

The first five pages after the cover summarize the rest of this paper.

CLIFFORD ALGEBRAS to E8

CLIFFORD EVOLUTION of OUR UNIVERSE

CREATION - OCTONIONIC NON-UNITARY INFLATION 28+64+28 = 120 D8 = 4X32 =128 D8 HALF-SPINOR

E8 - PARTICLES and FORCES - 8D LAGRANGIAN - TRIALITY

E8 HEISENBERG CREATION-ANNIHILATION -28+64+(63+1)+64=28

บ. (1)

AFTER INFLATION - QUATERNIONIC UNITARY EXPANSION now - DE : DM : OM = 0.75 : $0.21: 0.04$

E8 = H4 STANDARD MODEL CP2 + H4 GRAVITY+DARK ENERGY M4 STRINGS = WORLD LINES 26D STRING THEORY - SPIN-2 BOHMIONS QUANTUM BLOCKCHAINS OF SCHWINGER SOURCES

HIGGS = NAMBU-JONA-LASINIO TRUTH QUARK COMPOSITE FERMILAB TRUTH QUARK MASSES 130 GeV - $174 \mathrm{GeV}-220 \mathrm{GeV}$ CMS HIGGS MASSES 125 GeV - 195 GeV - 260 GeV

M4xCP2 KALUZA-KLEIN - MAYER HIGGS - 3 FERMION GENERATIONS

FERMION OCTONIONIC BRAIDS - FERMION MASSES

D4 STANDARD MODEL and GRAVITY+DE GHOSTS D4 GRAVITY+DE and STANDARD MODEL GHOSTS

FORCE STRENGTHS - 4D LAGRANGIAN - CALCULATION RESULTS

E8 - H4 - F4 - D4 - D3=A3 - H3 - H2=PENROSE STAR

CELLULAR AUTOMATA - CL(8) - CL(16) - MICROTUBULE - PYRAMIDS

SHILOV BOUNDARY HUMAN MIND COMPLEX DOMAIN UNIVERSAL CONSCIOUSNESS

William KIngdon Clifford (1845-1879)
described Geometry in terms of his invention: Real Clifford Algebras, which he called "mind-stuff", saying:
"... That element of which ... even the simplest feeling is a complex, I shall call Mind-stuff.
A moving molecule of inorganic matter does not possess mind or consciousness ; but it possesses a small piece of mind-stuff. ... When molecules are ... combined together ... the elements of mind-stuff which go along with them ... combine ... to form the ... beginnings of Sentience. When the molecules are so combined as to form the brain and nervous system. the corresponding elements of mind-stuff are so combined as to form some kind of consciousness ... changes in the complex which take place at the same time get so linked together that the repetition of one implies the repetition of the other. When matter takes the complex form of a living human brain, the corresponding mind-stuff takes the form of a human consciousness ..."

How some Images of Jung's Red Book relate to $\mathbf{C 8}-\mathrm{Cl}(16)$ Physics
Clifford Algebra $=$ Algebra of Spaces $=$
= Fundamental Human Understanding
For our 3-dim Space with coordinates x y z
$\mathrm{Cl}(3)$ describes
1 - all of 3-space itself

3 - three types of planes in space:

ZX

3 - three types of lines / directions in space:

$$
\mathbf{x}
$$

y
Z

1- one type of 0-dim point
SO
$\mathbf{C l}(3)$ of 3 -dim space has total dimension

$$
1+3+3+1=2^{\wedge} 3=8
$$

Generally, $\mathbf{C l}(\mathbf{N})$ of \mathbf{N}-dim space has dimension $\mathbf{2}^{\mathbf{N}} \mathbf{N}$ so the process of forming Clifford Algebra creates $\mathbf{2}^{\wedge} \mathbf{N}$-dim spaces from \mathbf{N}-dim spaces

THIS IS HOW OUR UNIVERSE GREW FROM NOTHING:

$\mathbf{C l}(16)=\mathbf{2}^{\wedge} \mathbf{1 6}=\mathbf{6 5 , 5 3 6}$ dimensions with graded structure
116120560182043688008114401287011440800843681820560120161
The 120 grade-2 BiVectors form the D8 Lie Algebra that is related to rotations in 16-dim space

The Real Clifford Algebra $\mathbf{C l}(16)=256 \times 256$ Real Matrix Algebra

The 256 first-column-vectors are the Spinors of D8 that are related to entanglement of connections to 16-dim space

The 256 D8 Spinors break down into two half-Spinors

$$
256=128+128
$$

The 128 and 128 half-spinors are mirror images of each other so 128 can describe all useful physics by itself.

120 D8 BiVectors + 128 D8 half-Spinors $=248$-dim E8

> 248-dim E8 lives in $\mathrm{Cl}(16) \mid$ containing 120-dim D8 biVectors of $\mathrm{Cl}(16)$

E8 / D8 = 64 + 64 Fermions $=128$-dim D8 half-Spinors of $\mathrm{Cl}(16)$

D8 / D4 x D4 = 64 Spacetime
D4 = 28 Standard Model (12)
with 16 Gravity + Dark Energy Ghosts
D4 = 28 Gravity + Dark Energy (16) with 12 Standard Model Ghosts

When Our Planck Scale Universe emerged from its Parent Universe by Quantum Fluctuation it was described by SO(16) symmetry of Compact E8(-248). E8 Compact Form E8(-248) with Symmetric Space E8 / Spin(16) represents Our Planck Scale Universe when it emerged from its Parent Universe by Quantum Fluctuation.

E8 Split Form EVIII E8(8) with Symmetric Space E8 / SO(8,8) represents Our Universe during Octonionic Inflation with Non-Unitary Quantum Processes.

Creation-Annihilation Operators for 8 components of $8+8$ Fermions are
odd-grade-+/-1 part of
E8 Maximal Contraction generalized Heisenberg Algebra

$$
h 92 \times \text { A7 }=28+64+((S L(8, R)+1)+64+28
$$

(see Rutwig Campoamor-Stursberg in Acta Physica Polonica B 41 (2010) 53-77 "Contractions of
Exceptional Lie Algebras and SemiDirect Products")

At the end of Non-Unitary Octonionic Inflation Our Universe had about (1/2) $16^{\wedge} 64=(1 / 2)\left(2^{\wedge} 4\right)^{\wedge} 64=2^{\wedge} 255=6 \times 10^{\wedge} 76$ Fermion Particles
the size of our Universe was then about $10^{\wedge}(-24) \mathrm{cm}$ which is about the size of a Fermion Schwinger Source Kerr-Newman Cloud

The End of Inflation time was at about $10^{\wedge}(-34)$ sec $=2^{\wedge} 64$ Tplanck The Zizzi Inflation phase of our universe ends with decoherence "collapse" of the 2^64 Superposition Inflated Universe into Many Worlds of Quantum Theory,

Farthest Supemova
The ratio Dark Energy : Dark Matter : Ordinary Matter for our Universe at the present time is calculated to be:

$$
0.75: 0.21: 0.04
$$

Paola Zizzi in gr-qc/0007006:
"... The self-reduction of the superposed quantum state ... corresponds to a superposed state of \ldots [$10^{\wedge} 19=2^{\wedge} 64$ qubits $]$. ... also the number of superposed tubulins-qubits in our brain ... leading to a conscious event. ...".

Inflation ends when a preferred Quaternionic Subspacetime freezes out,
converting 8 dim Spacetime into 4+4 dim M4 x CP2 Spacetime where
M4 = Physical Minkowski Spacetime and
CP2 $=\mathbf{S U}(3) / \mathrm{U}(2)$ Internal Symmetry Space Octonionic Integral becomes two Quaternionic Integrals

8-dim Octonionic Spacetime was broken into (4+4)-dim Unitary Quaternionic M4 x CP2 Kaluza-Klein Spacetime with SO*(16) symmetry of EIX E8(-24).

That transition was
a Weyl Unitary Trick within E8(8) from SO(8,8) to SO*(16) followed by a shifting of SO*(16) symmetry from E8(8) to E8(-24)
E8 form EIX E8(-24) with Symmetric Space E8 / SO*(16) represents Our Universe after End of Inflation

Indra's Net of Schwinger Sources - Bohm Quantum Blockchain

The $\mathrm{Cl}(16)$-E8 AQFT inherits structure from the $\mathrm{C}(16)$-E8 Local Lagrangian

```
Standard Model Gauge Gravity + Fermion Particle-AntiParticle
``` 8-dim SpaceTime
the \(\mathrm{Cl}(16)\)-E8 model at the Planck Scale has spacetime condensing out of Clifford structures forming a Leech lattice underlying 26 -dim String Theory of Worid-Lines with \(8+8+8=24\)-dim of fermion particles and antiparticles and of spacetime.
Slices of 8 v SpaceTime are represented as D8 branes. Each D8 brane has Planck-Scale Lattice Structure superpositions of 8 types of E8 Lattice
denoted by 1E8, IE8. JE8. kE8. EE8. IE8. JE8. KE8
Stack D8 branes to get SpaceTime with Strings = World-Lines
Let Oct16 \(=\) discrete mutiplicative group \(\{+/-1 .+/-\mathrm{i} .+/-\mathrm{j} .+/\) -.\(+/-\mathrm{E} .+/-\mathrm{I} .+/-\mathrm{J} .+/-\mathrm{K}\}\). Orbifold by Oct16 the As, to get 8 Fermion Particle Types
Obifold by Oct16 the 8s- to get 8 Fermion AntiParticle Types
Gauge Bosons from \(1 \mathrm{E8}\) and EE8 parts of a D8 give U(2) Electroweak Force
Gauge Bosons from IE8. JE8. and KE8 parts of a D8 give SU(3) Color Force Gauge Bosons from \(1 E 8, \mathrm{iE8}, \mathrm{~J} E 8\), and \(\mathrm{k} E 8\) parts of a D 8 give \(U(2,2)\) Conformal Gravity
The \(8 \times 8\) matices for collective coordinates linking one D8 to the next D8 give Position x Momentum
The automorphism group of a single 26 -dim String Theory cell modulo the Leech lattice is the Monster Group of order about \(8 \times 10^{\wedge} 53\).
When a fermion particle/antiparticle appears Tachyons create a cloud of particles/antiparticles. The cloud is one Planck-scale Fundamental Fermion Valence Particle plus an effectively neutral cloud of particlelantiparticle pairs forming a Kerr-Newman black hole.
That cloud constitutes the Schwinger Source.
The Schwinger Sources are finite regions in a Complex Domain spacetime corresponding to Green's functions of particle creation / annihilation.
Its structure comes from the 24-dim Leech lattice part of the Monster Group which is \(2^{\wedge}(1+24)\) times the double cover of Co1, for a total order of about \(10^{\wedge} 26\).
(Since a Leech lattice is based on copies of an E8 lattice and since there are 7 distinct E8 integral domain lattices there are 7 (or 8 it you include a non-Integral domain E8 latice)mdistinct Leech lattices. The physical Leech lattice is a superposition of them, effectively acding a tactor of 8 to the order.)
The volume of the Kerr-Newman Cloud is on the order of \(10^{\wedge} 27 \times\) Planck scale,
\(=\) roughly \(10^{\wedge}(-24) \mathrm{cm}\).

Julian Schwinger describes Elementary Particles as volumes of space - Sources - whose properties are determined by Green's Functions characteristic of the volumes.

In E8 Physics any Elementary Particle is immediately surrounded by a cloud of virtual particle-antiparticle pairs similar to a Kerr-Newman Black Hole with Symmetric Space - Bounded Complex Domain Shilov Boundary structure corresponding to its Gauge Group properties.
The Poisson Kernel - Bergman Kernel defines the Green's Function.
The initial Valence Particle is Planck scale. The number of Virtual Particles is determined by the Planck scale geometry of spacetime. The E8 model at the Planck Scale has spacetime condensing out of Clifford structures forming a Lorentz Leech lattice underlying 26 -dim String Theory of World-Lines with \(8+8+8=24\)-dim of fermion particles and antiparticles and of spacetime.
The automorphism group of one \(\mathbf{2 6}\)-dim String Theory cell modulo the Leech lattice is the Monster Group of order about \(8 \times 10^{\wedge} 53\). The Cloud structure comes from the \(\mathbf{2 4}\)-dim Leech lattice part of the Monster Group which is \(\mathbf{2 n}^{\wedge}(1+24)\) times the double cover of Co1, for an order of about \(1 \mathbf{1}^{\wedge} \mathbf{2 6}\). Due to superpostions of algebraically independent E8 Lattices the total number of Virtual particle/ antiparticle pairs is about \(10^{\wedge} 27\) so the volume of the Kerr-Newman Cloud is on the order of \(10^{\wedge} \mathbf{2 7} \times\) Planck scale, and its size should be about \(10^{\wedge}(27 / 3) \times 1.6 \times 10^{\wedge}(-33) \mathrm{cm}=\) roughly \(10^{\wedge}(-24) \mathrm{cm}\).

Each Schwinger Source particle-antiparticle pair should see (with Bohm Quantum Potential and Sarfatti Back-Reaction) the rest of our Universe in the perspective of \(8 \times 10^{\wedge} 53\) Monster Symmetry so a Schwinger Source acting as a Jewel of Indra's Net of Schwinger Source Bohm Quantum Blockchain Physics can see \(10^{\wedge} 27 \times 8 \times 10^{\wedge} 53=8 \times 10^{\wedge} 80\) Other Sources of an Indra's Net.

To fit inside the initial Schwinger Source the Information Elements of all the Other Schwinger Sources of Our Universe (\(10^{\wedge} 77\) or so) should be distributed as a Fractal Julia Set. There are \(\mathbf{2}^{\wedge} \mathbf{n}\) stage-n cells in a Binary Decomposition of Julia Sets, so a stage-256 Julia level set based on Binary Decomposition has \(\mathbf{2}^{\wedge} \mathbf{2 5 6}=\) about \(\mathbf{1 0}^{\wedge 77}\) cells so Full Indra Net information can be seen / reflected by each Schwinger Source Indra Jewel.

Each Schwinger Source contains \(\mathbf{1 0}^{\wedge 27}\) Virtual pairs of particles each of which can see along a connecting Line an Other Indra's Net Source which Line sees Other Sources through Monster Group Lens elements so that the Other Source appears to the Original Source to be a Julia Set.

Each Schwinger Source has a Mandelbrot Set that tells its Source what each of the many Indra's Net Source Julia set looks like by correlating Monster Group Lens Elements with Types of Julia Set. Self-Perception is always the \(\mathbf{c}=\mathbf{0}\) Circle Julia Set.

Splitting Octonionic Spacetime into Quaternionic M4 x CP2 Kaluza-Klein over CP2 produces
Higgs by the Mayer Mechanism and Second and Third Generation Fermions

Quaternionic E7xSU(2) structure breaks 8-dim Spacetime Octonionic Symmetry to Quaternionic (4+4)-dim Associative x CoAssociative Kaluza-Klein Spacetime
(see Reese Harvey "Spinors and Calibrations" (Academic 1990))
where M4 = 4-dim Minkowski Physical Spacetime is Associative and CP2 \(=\mathrm{SU}(3) / \mathrm{SU}(2) \times \mathrm{U}(1)\) Internal Symmetry Space is CoAssociative

Meinhard Mayer said (Hadronic Journal 4 (1981) 108-152): "... each point of ... the ... fibre bundle ... E ...

n

\(E=P / H\)

n
... consists of
a four- dimensional spacetime point \(x\) [in M4]
to which is attached the homogeneous space G / \(\mathrm{H}[\mathrm{SU}(3) / \mathrm{U}(2)=\mathrm{CP} 2\)]
the components of the curvature lying in the homogeneous space G / H could be reinterpreted as Higgs scalars (with respect to spacetime [M4])
the Yang-Mills action reduces to a Yang-Mills action for the h-components [U(2) components] of the curvature over M [M4] and a quartic functional for the "Higgs scalars", which not only reproduces the Ginzburg-Landau potential, but also gives the correct relative sign of the constants, required for the BEHK ... Brout-Englert-Higgs-Kibble ... mechanism to work. ...".

\section*{3 Generations of Fermions}

In Kaluza-Klein M4 x CP2 there are 3 possibilities for a fermion represented by an Octonion O basis element to go from point A to point B:

1 - \(A\) and \(B\) are both in M4: First Generation Fermion whose path can be represented by the single \(O\) basis element so that First Generation Fermions are represented by Octonions O.

2 - Either A or B, but not both, is in CP2: Second Generation Fermion whose path must be augmented by one projection from CP2 to M4, which projection can be represented by a second O basis element so that Second Generation Fermions are represented by Octonion Pairs OxO.

3 - Both A and B are in CP2: Third Generation Fermion whose path must be augmented by two projections from CP2 to M4, which projections can be represented by a second O and a third O , so that Third Generation Fermions are represented by Octonion Triples OxOxO.

\section*{3 Generation Fermion Combinatorics}

First Generation (8)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline electron & & green up quark & blue up quark & red down quark & green down quark & blue down quark & neutrino \\
\hline E & 1 & \(J\) & K & i & j & k & 1 \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Second Generation (64)}

Mu Neutrino (1)
Rule: a Pair belongs to the Mu Neutrino if: All elements are Colorless (black) and all elements are Associative (that is, is 1 which is the only Colorless Associative element) .

Muon (3)
Rule: a Pair belongs to the Muon if:
All elements are Colorless (black)
and at least one element is NonAssociative (that is, is E which is the only Colorless NonAssociative element).

Blue Strange Quark (3)
Rule: a Pair belongs to the Blue Strange Quark if:
There is at least one Blue element and the other element is Blue or Colorless (black) and all elements are Associative (that is, is either 1 or i or j or k).

\section*{Blue Charm Quark (17)}

Rules: a Pair belongs to the Blue Charm Quark if:
1 - There is at least one Blue element and the other element is Blue or Colorless (black) and at least one element is NonAssociative (that is, is either E or I or J or K) 2 - There is one Red element and one Green element (Red x Green = Blue).

\section*{Third Generation (512)}

Tau Neutrino (1)
Rule: a Triple belongs to the Tau Neutrino if:
All elements are Colorless (black) and all elements are Associative
(that is, is 1 which is the only Colorless Associative element)

Tauon (7)
Rule: a Triple belongs to the Tauon if:
All elements are Colorless (black)
and at least one element is NonAssociative (that is, is E which is the only Colorless NonAssociative element)

Blue Beauty Quark (7)
Rule: a Triple belongs to the Blue Beauty Quark if:
There is at least one Blue element and all other elements are Blue or Colorless (black) and all elements are Associative (that is, is either 1 or i or j or k).

Blue Truth Quark (161)
Rules: a Triple belongs to the Blue Truth Quark if:
1 - There is at least one Blue element and all other elements are Blue or Colorless (black)
and at least one element is NonAssociative (that is, is either E or I or J or K) 2 - There is one Red element and one Green element and the other element is Colorless (Red x Green = Blue)
3 - The Triple has one element each that is Red, Green, or Blue, in which case the color of the Third element (for Third Generation) is determinative and must be Blue.

(Red and Green Beauty and Truth Quarks follow similar rules)

Fermion masses are calculated as a product of four factors: \(\mathbf{V}(\) Qfermion \() \times \mathbf{N}(\) Graviton \() \times \mathbf{N}(\) octonion \() \times\) Sym
The ratio of the down quark spinor manifold volume factor to the electron spinor manifold volume factor is
\(\mathbf{V}(\) Qdown quark \() / \mathbf{V}(\) Qelectron \()=\mathbf{V}\left(\mathbf{S}^{\wedge} \mathbf{7 x}\right.\) RP^1)/1 \(=\mathbf{p i \wedge 5} / 3\).
The third generation fermion particles correspond to triples of octonions.
There are \(8^{\wedge} 3=512\) such triples.
The triple \(\{1,1,1\}\) corresponds to the tau-neutrino.
The other 7 triples involving only 1 and \(E\) correspond to the tauon:
\(\{E, E, E\}\{E, E, 1\}\{E, 1, E\}\{1, E, E\}\{1,1, E\}\{1, E, 1\}\{E, 1,1\}\)
The symmetry of the 7 tauon triples is the same
as the symmetry of the first generation tree-level-massive fermions,
3 down, quarks, the 3 up quarks, and the electron,
so by the Sym factor the tauon mass should be the same as
the sum of the masses of the first generation massive fermion particles.
Therefore the tauon mass is calculated at tree level as 1.877 GeV .
The beauty quark corresponds to 21 triples.
They are triples of the same form as the 7 tauon triples involving 1 and E , but for 1 and \(\mathrm{I}, 1\) and J , and 1 and \(\mathrm{K}=\) red, green, and blue beauty quarks.
The seven red beauty quark triples correspond to the seven tauon triples, except that the beauty quark interacts with \(6 \mathrm{Spin}(0,5)\) gravitons while the tauon interacts with only two.
The red beauty quark constituent mass should be the tauon mass times the third generation graviton factor \(6 / 2=3\), so the red beauty quark mass is \(\mathbf{m b}=5.63111 \mathrm{GeV}\).

Triples of the type \(\{1, I, J\},\{I, J, K\}\), etc., do not correspond to the beauty quark, but to the truth quark. The truth quark corresponds to those 512-1-7-21 = 483 triples, so the constituent mass of the red truth quark is 161 / \(7=23\) times the red beauty quark mass, and the red T-quark mass is \(\mathrm{mt}=129.5155 \mathrm{GeV}\)

\section*{248-dim E8 contains 120-dim D8}

E8 / D8 = 64 + 64 Fermions
D8 / D4 x D4 = 64 Spacetime
D4 = 28 Standard Model (12)
with 16 Gravity + Dark Energy Ghosts
D4 = 28 Gravity + Dark Energy (16) with 12 Standard Model Ghosts

The 24 Orange Root Vectors of the D4 of E8 Standard Model + Gravity Ghosts are on the Horizontal X-axis.

\section*{- - ↔ \\ \(-500-\) \\ - ○ ○}

8 of them in the Orange Box represent the 8 Root Vectors of the Standard Model Gauge Groups \(\mathrm{SU}(3) \mathrm{SU}(2) \mathrm{U}(1)\).
Their 4 Cartan Subalgebra elements correspond to the 4 Cartan Subalgebra elements of D4 of E8 Standard Model + Gravity Ghosts and to half of the 8 Cartan Subalgebra elements of E8.

The other \(24-8=16\) Orange Root Vectors represent Ghosts of 16D U(2,2) which contains the Conformal Group SU(2,2) = Spin(2,4)
that produces Gravity + Dark Energy by the MacDowell-Mansouri mechanism.
Standard Model Gauge groups come from \(\mathrm{CP} 2=\mathrm{SU}(3) / \mathrm{SU}(2) \times \mathrm{U}(1)\)
(as described by Batakis in Class Quantum Grav. 3 (1986) L99-L105)
Electroweak \(\mathrm{SU}(2) \times \mathrm{U}(1)\) is gauge group as isotropy group of CP2
\(\mathrm{SU}(3)\) is global symmetry group of CP2 but due to Kaluza-Klein M4×CP2 structure of compact CP2 at every M4 spacetime point, it acts as Color gauge group with respect to M4.

The 24 Yellow Root Vectors of the D4 of E8 Gravity + Standard Model Ghosts are on the Vertical Y -axis.
12 of them in theYellow Box represent the 12 Root Vectors of the Conformal Gauge Group SU(2,2) = Spin \((2,4)\) of Conformal Gravity + Dark Energy.
The 4 Cartan Subalgebra elements of \(\mathrm{SU}(2,2) \mathrm{xU}(1)=\mathrm{U}(2,2)\) correspond to the 4 Cartan Subalgebra elements of D4 of E8 Gravity + Standard Model Ghosts and to the other half of the 8 Cartan Subalgebra elements of E8.

The other 24-12 = 12 Yellow Root Vectors represent Ghosts of 12D Standard Model whose Gauge Groups are \(\operatorname{SU}(3) \mathrm{SU}(2) \mathrm{U}(1)\).

Gravity and Dark Energy come from its Conformal Subgroup SU(2,2) = Spin(2,4) (see Appendix - Details of Conformal Gravity and ratio DE : DM :OM)
\(\operatorname{SU}(2,2)=\) Spin \((2,4)\) has 15 generators:
1 Dilation representing Higgs Ordinary Matter
4 Translations representing Primordial Black Hole Dark Matter
\(10=4\) Special Conformal +6 Lorentz representing Dark Energy
(see Irving Ezra Segal, "Mathematical Cosmology and Extragalactic Astronomy" (Academic 1976))
The basic ratio Dark Energy : Dark Matter : Ordinary Matter \(=10: 4: 1=0.67: 0.27: 0.06\) When the dynamics of our expanding universe are taken into account, the ratio is calculated to be \(0.75: 0.21: 0.04\)

D4
8 Roct Vectors +4 Cartan Elements for 12 Gavge Bosons of Stan dard Model
SU(3)xSU(2)ru(1)

The force strength of a given force is
(1 / Mforce^2) (Vol(MISforce)) (Vol(Qforce) / Vol(Dforce)^(1 / mforce)) where:

Mforce represents the effective mass;
MISforce represents the relevant part of the target Internal Symmetry Space; Vol(MISforce) stands for volume of MISforce and is sometimes also denoted by Vol(M);
Qforce represents the link from the origin to the relevant target for the gauge boson;
Vol(Qforce) stands for volume of Qforce;
Dforce represents the complex bounded homogeneous domain of which Qforce is the Shilov boundary; mforce is the dimensionality of Qforce, which is Vol(Dforce) \()^{\wedge}(1 /\) mforce \()\) stands for a dimensional normalization factor (to reconcile the dimensionality of the Internal Symmetry Space of the target vertex with the dimensionality of the link from the origin to the target vertex).
\begin{tabular}{|c|c|c|c|c|}
\hline Spin(5) & Spin(7) / Spin(5)xU(1) & IV5 & 4 & RP^1xS^4 \\
\hline SU(3) & SU(4) / SU(3)xU(1) & B^6(ball) & 4 & S^5 \\
\hline SU(2) & Spin(5) / SU(2)xU(1) & IV3 & 2 & \(\mathrm{RP}^{\wedge} 1 \times S^{\wedge} 2\) \\
\hline U(1) & & - & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Force & M & Vol(M) & Q & Vol(Q) & D & Vol(D) \\
\hline gravity & S^4 & 8pi^2/3 & RP^1xS^4 & 8pi^3/3 & IV5 & pi^5/2^45! \\
\hline color & CP^2 & \(8 \mathrm{pi}^{\wedge} 2 / 3\) & squashed \(\mathrm{S}^{\wedge} 5\) & \(4 \mathrm{pi}^{\wedge} 3\) & B^6(ball) & pi^3/6 \\
\hline Weak & \(\mathrm{S}^{\wedge} 2 \mathrm{xS}{ }^{\wedge} 2\) & 2x4pi & RP^1xS^2 & \(4 \mathrm{pi}{ }^{\wedge} 2\) & IV3 & pi^3/24 \\
\hline e-mag & T^4 & 4x2pi & & - & & \\
\hline
\end{tabular}

The relative force strengths at the characteristic energy level of each force are:
Spin(5) gravity at 10^19 GeV =1; GGmproton^2 approx \(5 \times 10^{\wedge}-39\)
\(\mathbf{S U (3)}\) color at \(245 \mathrm{MeV}=0.6286\)
at \(5.3 \mathrm{GeV}=0.166\)
at \(34 \mathrm{GeV}=0.121\)
at \(91 \mathrm{GeV}=0.106\); with nonperturbative effects \(=0.125\)
\(\mathbf{S U (2)}\) weak at \(100 \mathrm{GeV}=0.2535\); GWmproton^2 approx \(1.05 \times 10^{\wedge}-5\)
\(\mathbf{U (1)}\) e-mag at \(4 \mathrm{KeV}=1 / 137.03608\)

Fermion masses are calculated as a product of four factors:
\[
\text { V(Qfermion) } \times \mathrm{N}(\text { Graviton }) \times \mathrm{N}(\text { octonion }) \times \text { Sym }
\]

The ratio of the down quark spinor manifold volume factor to the electron spinor manifold volume factor is
\[
\mathrm{V}(\text { Qdown quark }) / \mathrm{V}(\text { Qelectron })=\mathrm{V}\left(\mathrm{~S}^{\wedge} 7 \times \mathrm{RP}^{\wedge} 1\right) / 1=\mathrm{pi} \wedge 5 / 3 .
\]

The third generation fermion particles correspond to triples of octonions.
There are \(8^{\wedge} 3=512\) such triples.
The triple \(\{1,1,1\}\) corresponds to the tau-neutrino.
The other 7 triples involving only 1 and E correspond to the tauon:
The beauty quark corresponds to 21 triples.
They are triples of the same form as the 7 tauon triples involving 1 and E , but for 1 and \(\mathrm{I}, 1\) and J , and 1 and K ,
which correspond to the red, green, and blue beauty quarks,
Triples of the type \(\{1, I, J\},\{I, J, K\}\), etc.,
do not correspond to the beauty quark, but to the Truth quark.
The Truth quark corresponds to those 512-1-7-21 = 483 triples, so the constituent mass of red truth quark is 161/7=23 times red beauty quark red Truth quark mass is \(\mathrm{mt}=129.5155 \mathrm{GeV}\)

Here is a summary of E8 Physics model calculation results. Since ratios are calculated, values for one particle mass and one force strength are assumed.
Quark masses are constituent masses. Most of the calculations are tree-level, so more detailed calculations might be even closer to observations.

\(\mathrm{E} 8=\mathrm{H} 4+\mathrm{H} 4=120+120=240-\) vertex Witting polytope tiling of 8-dim space

\(\mathrm{E} 8=120\) BiVectors +128 half-Spinors of \(\mathrm{Cl}(16)\) Clifford Algebra with graded structure
116120560182043688008114401287011440800843681820560120161
By 8 -Periodicity of Real Clifford Algebras: \(\mathrm{Cl}(16)=\) tensor product \(\mathrm{Cl}(8) \times \mathrm{Cl}(8)\) so with that product \(\mathrm{E} 8=\mathrm{F} 4 \times \mathrm{F} 4\)

H4 = 24 (vertices) +96 (edges) \(=120\)-vertex 600 -cell tiling of 4-dim space with Coxeter Group determined by E8

F4 = 24 cell + dual 24-cell tiling of 4-dim space
F4 \(=8\) Vectors + 28 BiVectors + 16 Spinors of \(\mathrm{Cl}(8)\) Clifford Algebra with graded structure 188285670562881 tile 4-dim space by 24-cells and their dual 24-cells

D4 24-cell tiling of 4-dim space
\(\mathrm{D} 4=28\) BiVectors of \(\mathrm{Cl}(8)\) Clifford Algebra with 24 root vectors with graded structure \(1 \begin{array}{llllllll}1 & 8 & 28 & 56 & 70 & 56 & 8 & 1\end{array}\) tile 4 -dim space by 24 -cells

A3 = D3 = cuboctahedral tiling of 3-dim space
\(\mathrm{A} 3=\mathrm{D} 3=15\) BiVectors of \(\mathrm{Cl}(6)\) Clifford Algebra with 12 root vectors and with graded structure 1615201561 tile 3-dim space by cuboctahedra which can be seen as a central part of a 24 -cell (green vertices above)

H3 = 12-Vertex Icosahedron as Jitterbug Transform of 12-Vertex Cuboctahedron with Coxeter Group determined by D6

\section*{H2 Penrose STAR tilings of 2-dim space}

\section*{H2 = l^5_2 = Penrose STAR tiling of 2-dim space with Coxeter group determined by A4 which contains A2 and field extension \(Q(\) sqrt(5))}

The central part of the tiling has 5 pentagonal sectors

Each of the 5 pentagonal sectors of the tiling contains a 2-dim projected version of the 8-dim E8 Root Vector structure of E8 Physics corresponding to the Complex E6 subalgebra of Octonionic E8. The outer boundary of each sector is not a straight line but is curved with Conformal Symmetry and pentagonal sectors further out are conformally curved rather than straight-line pentagons.

Each pentagonal sector represents the Complex part of Octonionic E8 Physics whose 240 E8 Root Vectors project to the 72 Root Vectors of E6 subalgebra of E8 which 72 E6 Root Vectors have the following physical interpretation
\(16=2 \times 8\) of which represent Complex Fermion Particles
\(16=2 \times 8\) of which represent Complex Fermion AntiParticles
\(16=2 \times(4+4)\) of which represent Complex (4+4)-dim Kaluza-Kiein SpaceTime 12 of which represent the Standard Model
12 of which represent Gravity + Dark Energy
as shown in the following image of one of the pentagonal sectors:

The Bohm Quantum Potential interacts between two Pentagonal Sectors by 24 Bohm Carrier Tiles of one Pentagonal Sector carrying E8 Configuration Information and comparing it with
24 Bohm Carrier Tiles of the Other Sector carrying E8 Configuration Information. If the resulting \(24 \times 24\) Matrix shows that the two E8 Configurations are similar, then a Bohm Quantum Potential Resonant Connection is established.

The Bohm Quantum Potential 24x24 Matrix is traceless because Configuration Resonance is sensitive to similarity rather than dilation scale and is symmetric because Configuration Resonance is symmetric between Sectors.

Guillermo Moreno (arariv math10512517) has shown that \(V(7,2)=\) Spin(77\() /\) Spin(5) can
beidentified with the Zero Divisors of Sedenions which have \(7+28=35\) Associative Trip se identified with the Zero Divisors of Sedenions which have \(7+28=35\) Associative Triples
and for which Zero Divisors are given by the fibration \(\mathrm{V}(7,2) \rightarrow \mathrm{G} 2 \rightarrow \mathrm{~S}\) [3 -sphere \(]\)
 whose \((10 \mathrm{D}\) correspond to \(\mathrm{Cl}(1,9)=\mathrm{Cl}(2,8)\) Conformal over \(\mathrm{Cl}(1,7), 7)\)
that \(\mathrm{V}(15,2)=\operatorname{Spin}(15) /\) Spin \((13)\) is related to, but not identified with,

he Zero Divisors of Voudon 256 -ons corresponding to Coci(f)

Robert de Marrais said
"... 256 ... \(2^{\wedge} 8\) ions Voudons
Moreno ... determines that the automorphism group of the ZD 's of all \(2^{\wedge} n\)-ions ... obey a simple pattern: for \(n \geq 4\) this group has the for \(\mathrm{G} 2 \times(\mathrm{n}-3) \times \mathrm{S} 3\) (\(\ldots\) order- 6 permutation group on 3 elements) ... This says the automorphism group of the Sedenions' ZD's has order \(14 \times 1 \times 6=84 \ldots\) based on 7 octahedral lattices ("Box-Kites")

here are] ... Emanation tables ... ET's for \(\mathrm{S}=15, \mathrm{~N}=5,6,7 \ldots\) and fractal limit.

F4 / B4 = OP2 = Spinor Fermions = = 8 Particles +8 AntiParticles B4 / D4 = 8-dim SpaceTime =

04 = Spin(4,4) Kaluza-K Conformal Gravity + Dark Energy

E8 Kaluza-Klein (Cnf6 \(->\) M4) x CP2
In \((\mathrm{Cl}(8)\) of CP 2\() \times(\mathrm{Cl}(8)\) of \(\mathrm{Cnf6} \rightarrow \mathrm{M} 4)=\mathrm{Cl}(16)\) containing E8 at each of the 256 points of \(\mathrm{Cl}(8)\) of Cnf6 \(->\) M4 there are all 256 points of \(\mathrm{Cl}(8)\) of CP2

D8 = Cl(16) Bivectors = 120
E8 / D8 \(=128\)-dim Fermion Spinor Space \(=8\) components of \(8+8\) Fermions

D4 containing D3 \(=\operatorname{Spin}(2,4)=\mathbf{A 3}=\operatorname{SU}(2,2)\) for Conformal Gravity + Dark Energy
D4 containing D3 = SU(4) containing Color Force SU(3)
\(10 x F r 3(0)=\mathrm{Cl}(16)\) TriVectors \(=560\)

Void \(\rightarrow \mathrm{Cl}(\) Void \() \rightarrow \mathrm{Cl}(0)->\mathrm{Cl}(1)->\mathrm{Cl}(2)->\mathrm{Cl}(4) \rightarrow \mathrm{Cl}(16)\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Kaluza-Klein Spacetime M4 x CP2} & 1 \\
\hline \multirow[t]{5}{*}{\(\mathrm{Cl}(8)\) that contains \(28=\) D4 for M4 Gravity} & \(\mathrm{Cl}(8)\) that & 16 \\
\hline & contains & 120 \\
\hline & \(28=\) D4 for & 560 \\
\hline & CP2 & 1820 \\
\hline & Std Model & 4368 \\
\hline \multirow[t]{2}{*}{\(\downarrow\)} & I & 8008 \\
\hline & & 11440 \\
\hline 1 & 1 & 12870 \\
\hline 8 & 8 & 11440 \\
\hline 28 & 28 & 8008 \\
\hline 56 & 56 & 4368 \\
\hline & 70 & 1820 \\
\hline \multicolumn{2}{|r|}{56 56} & 560 \\
\hline \multicolumn{2}{|r|}{\(28-28\)} & 120 \\
\hline & 8 & \\
\hline \multicolumn{2}{|l|}{} & 1 \\
\hline \multicolumn{2}{|r|}{\(\mathrm{Cl}(8) \times \mathrm{Cl}(8)\)} & \(\mathrm{Cl}(16)\) \\
\hline \multicolumn{2}{|r|}{\[
(8 s+8 c) \times(8 s+8 c)=
\]} & \[
\mathbf{8 s}+
\] \\
\hline \multicolumn{3}{|r|}{(8cx8s \(+8 \mathrm{c} \times 8 \mathrm{c})\)} \\
\hline
\end{tabular}

```

