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Preface

The contents of this volume, better than any comments by the Editor, 
will sh o w  h o w  great and fruitful is the contribution that a skillful use of 
modern methods o f functional analysis can bring to the study and solution 
of challenging problems posed by recent developments in science and 
technology.

Linear mathematics is o f little or no avail in a realistic study o f stability 
conditions, optimal performance o f systems with feedback, organizational 
principles in assemblies o f communicating elements, etc. Thus, a  whole 
n ew  branch o f mathematics has come into existence for the study o f this 
vast class o f phenomena, in short, optimization.

As is always the case with all beginnings, many results were a t first 
derived with too narrow  a scope, or with methods o f  only heuristic value. 
The intervention o f functional analysis permits the recognition of the 
underlying unity o f many seemingly different problems, opens new, power­
ful ways of attack, as well as enlarging the horizon o f the pure m athem ati­
cians, who always find stimulation and incentive in an effective interaction 
with colleagues from other fields of natural science.

The purpose of this 7th International School of Ravello (June 1965), 
which the generous support of NATO made possible, was tw ofold: to hear 
eminent specialists speak on the general state of the art and o f their own 
work; to bring together active researchers of the interested areas and have 
them pose problems to the mathematicians and find with them and am ong 
themselves a common language and understanding.

The scientific organization and direction o f the School are due to 
Professor J. L. Lions, to whom belongs the credit for the gratifying success 
of this initiative, with our warmest personal thanks. Thanks are also due to  
Academic Press for their ever-efiteient and understanding cooperation.

Naples, Italy 
December, 1966

E. R. Caianiello



The First Nondistributive Algebra, with Relations to 
Optimization and Control Theory

C . M uses

Centre de Recherches en Mathematiques et Aforphologie 
Pully-Lausanne, Switzerland

I. Introduction

Within the limitations o f time and of space that circumstances have made 
unavoidable, only a brief outline o f this ramified subject can be made here. 
The reader interested in further details is referred to a forthcoming m ono­
graph, “ Theory of Nondistributive Multiplication and Algebraic Struc­
tures” (Muses).

Matrices are isomorphic with hypercomplex numbers; and projective 
geometry, affine geometry, the theory of vector spaces (hence that o f 
function spaces), and linear algebra are all isomorphic, forming one o f the 
most significant and profound convergences o f meaning in all mathematics.

This convergence, in one or more of its aspects, is treated, for example, 
in the following works: H. Weyl, "M athem atische Analyse des Raum- 
problems” (1923); B. Segre, “ Lezioni di geometria moderna”  (Vol. I, 
1948);G. B irkhoffandS. MacLane, “ A Survey of Modern Algebra”  (1948); 
C. C. MacDuffee, "Vectors and M atrices” (1943); O, Schreier and E. 
Sperner, "Introduction to M odern Algebra and M atrix Theory” (first 
English edition, 1951); and H. Schwerdtfeger, "Introduction to Linear 
Algebra and M atrix Theory” (1951). A. A, A lbert’s “ M odern Higher 
Algebra” (1937) and “ Structures of Algebras” (1939) are highly recom­
mended as well.

Full awareness of the fact and significance o f the above-mentioned 
convergence has not yet been realized, however; nor has the fact that 
hypercomplex numbers and their related rings and fields are the most
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economical way to represent it. G roup theory is related to  the same funda­
mental idea, its algebra stemming from that of matrices, and hence from 
linear algebras, i.e., the algebra of hypercomplex numbers.

In his modern classic, “Algebraic Theory of Numbers” (1940), Hermann 
Weyl observed on p. 222: ” . ..  enormous progress has been made in the 
theory o f class fields . . .  but in spite o f ail efforts I have the feeling that the 
theory has not yet assumed its final form .”

The reason for Weyl’s penetrating appraisal is found, for instance, in the 
predicament of G. Voronoi, who in his theory of cubic number fields was 
forced to speak of ideals that were “existent” and of those that “have no 
real existence” , by which it turns out that he means representable (or not) in 
terms of roots of complex numbers. The entire theory o f ideals, and hence 
o f class fields, suffers from the same defect: the limitations of complex 
numbers.

It is as if  we said that 3 was an absolute prime because it has no explicit 
factors, complex or real. But it is less well known that 3 =  (I + ( +j )  (1 —  i —j )  
than that the number 5 factors into (2 + 0  and (2 — /). For 7 we need 
complete quaternion factors, i.e., 7 =  (2 +  j +y+/c) • (2 -  / ~ j —k). N o more 
than quaternion factors are required for any real integral prime, and thus 
H-algebra is sufficient to “dissolve” all such real primes. However, if we 
stop there, we need to hypostatize “ideals” (together with their modern 
and rather artificial extensions, “ ideles” and “adeles”) to eliminate ap­
parent paradoxes arising from the investigation of complex and hyper- 
complex primes. But we need not stop there; and since V  — 1 is the point 
a t which ail number systems remain open, we are indeed forced to  go on 
to nonassociative and then to nondistributive algebra.

Just as real algebra is not closed, but open at the operation “ square root 
o f minus unity,” so are Gaussian and quaternion algebra similarly open, 
for \ / —l *s multivalued, i.e.,/', k , etc., also satisfy it, leading us from real 
(R) to Gaussian (G) to  quaternion or Hamiltonian (H) to  Cayley (C) 
algebra, and beyond.

Thus hypercomplex algebra contains complex or Gaussian algebra, and 
the latter contains real a l g e b r a ;o r R c G c H c C c N .T h e  last term in this 
sequence is new, and previous attempts to extend Cayley algebra have 
failed because of not realizing the theorems that: (1) any extension of R
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must have nonamalgamative addition; (2) any extension of G must have 
noncommutative multiplication; (3) any extension of H must have non- 
associative multiplication; and (4) any extension o f  C must have non­
distributive multiplication. Thus all linear algebras with less than 5 and 
more than 2 /-elements are contained in H ; all with more than 3 and less 
than 8, in C ; all with more than 7 and less than 16, in N. It is in this sense 
that R, G, H, C, and N  are the only complete linear algebras with less than 
17 elements in all, for all linear algebras contain the real element 
/ ±o =  1 =  1, as well as the self-orthogonal elements i±<o= 0 :ki=0, oo

In general, + in; and i2n-  - 1  (0> n < to), where i s ii j=  i2,
k  = iy  The above nonarbitrary notation and its properties are indispens­
able in handling hypercomplex numbers efficiently and usefully. A 
table of all the complete linear algebras with finite factor multiplication 
follows, zero being regarded not as a finite, but as an infinitesimal number.

A complete algebra has 2" distinct elements, none o f which represents 
merely the same nonreal element extended along a different real dimension. 
Clifford algebras, since they apply ix to successively higher real dimensions 
in order to form their 2"elements, are not complete algebras. Thus the only 
complete algebra requiring a representation space of four dimensions is 
quaternion algebra (H): the only complete algebra similarly requiring eight 
dimensions is octave algebra (C); and the only complete algebra similarly 
requiring sixteen dimensions is N-algebra. A characteristic o f complete 
algebras is successively to  require a more precise formulation o f  what is 
meant by addition or multiplication, and that each embeds in itself all the 
complete algebras below it, thus preserving the self-consistency o f m athe­
matics. The rules of arithmetic really do not "break down” ; they merely 
become more sensitive, taking more distinctions into account in higher 
algebras, A complete algebra is also one whose elements form a kind o f multi­
plication loop, regenerating each other, except for zero form ation when the 
number of elements exceeds 8. Finite factor (ff) multiplication is that which 
does not entail the equation a -0 = 6 , where c, b ^ 0, «>, although it may 
involve a b = 0, a ^ b ,  as in N-algebra.

Thus non-ff multiplication entrains what may be termed zero revival, 
whereas the nondistributive multiplication o f N-algebra involves mutual 
annihilation or zero creation. To perform ff multiplication, the precise kind
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of zero product must be specified, the rules for such specification 
(deducible from the wave-operator interactions) being necessary in the 
process o f zero revival, i.e., the operation a - 0 = i ;  a, b ^O , oo. All non-ff 
multiplication is nondistributive. The converse is not true, however, since 
there are four form s(R, G, H, and C) o f ff multiplication that are distributive.

TABLE I

F ive C om plete L inear  A lgebras, I n v o lv in g  T hree K in d s  op H yfercom plex  N umbers

N o. o f  
Algebra elements

Characterization

N o. o f  units Addition Multiplication

Real
Gaussian
Hamiltonian
Cayleyan
Nondistributive

R 1 ,0  
,  ... G  1 ,1  
{at) H  1 ,3  

l C  1 ,7  
N  1 ,15

Ti =  2 am 
(2/3)° T j= 4  - a m  

7* =  24 — am 
r B=24Q - a m  

714-4320^ - am

co, as, di 
co, as. di

- c o , - a $ , a i  
— co, - a s ,  - d i  i

° This fraction is not ad hoc but involves the Eisenstein integers based on the cube 
roots o f  minus and plus unity, and involving the imaginary angles ± (2 /3 )ni.

b This is the probable figure based on the densest packing yet achieved [see Leech (14)) 
for D u .  However, this figure does not stand on the same footing as the prior four, since 
the polytope o f  centers is no longer convex, and there is no longer distributive multiplica­
tion, which in geometric terms means that in the D lb lattice pack, every sphere o f  TiS no 
longer touches the Du, portions o f  T^. This phenomenon appears from onward, 
since D% is the last dimension to have a convex polytope o f  centers, which is the D„ figure 
with its vertices at the centers o f  the hyperspheres in the Tn shell, which centers in turn 
may be regarded as an infinitesimal portion of a KDn- j  space where K ~  1 if 2 « « ^ 8 ,  
and # < Q  if ® >  n >  9. The T„ refer to maximal-contact tangent sphere shells in D„.

Thus R, G, H, C, and N may be considered to have Euclidean dimen­
sionalities o f 1, 2, 4, 8, and 16, respectively, T„ being the maximal number 
o f equal tangent hyper spheres that can be fit about another such sphere of 
the same radius in D„, a parabolic space o f n dimensions. In the same 
terminology ± s Dn is an elliptic ( + )  or hyperbolic ( - ) ,  i.e., a convex or 
concave space of curvature K  and n dimensions. Since ±JfD ^ \  is always 
embedded in 0 A«S  A * the parabolic, flat, or Euclidean spaces are o f prime 
importance, and hence the linear algebras.
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There is a close connection between the groups o f tangent hyperspheres 
mentioned in the last paragraph and error-correcting computer codes, 
which in itself suggests the importance of the present theme for optimization 
and control theory. (See also pages 200ff.)

We now have the complete algebras R, G, H, C, N, each o f whose 
multiplications is embedded toward the right; i.e., N-algebra contains 
R, G, H, and C. N  is the first algebra with nondistributive ( —di) as well as 
nonassociative ( - 0 5 ) and noncommutative (~ co )  multiplication; ( - )o m  
denotes (non)amalgamative addition, only R being am, co, as, and di, just 
as N  only in this fundamental table o f the real multiplication linear algebras 
is characterized completely negatively as - am, - c o ,  - a s ,  and - d i .

Before commenting further on these characterizations and on the mean­
ing o f the T„ and their relation to optimization and control, we shall append 
the other tables necessary to  complete the multiplication table for N- 
algebra.

II. The An  Multiplication Table (Unlisted triplets are —as)

(a) The Linear Triplet (as, co): n -n=  — 0

FiO. 3. T h u s n , -0 = « c; 0 «/ ' Hc=s- 0 ;  i . e . , ~ i o « - I .

This linear triplet, as our diagram shows, involves by the theory o f its 
multiplication the distinction of a separating center or source (n,) and a 
combining center or sink (nc). Thus in i - i~  — 1, the two (*)’s are not 
identical. This subtle distinction does not affect ordinary hypercomplex 
algebra.

Subscript rules:
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Thus /_*) is doubly indeterminate, and here < oo. 

(b) The H -type Triplets {as, —co), Each with 6 Variants
‘I. 3-2 -  - 1 19. 3-13 -  14

la2 . 4-1 -  - 5 2 0 . 1 2 - 8 =  4
,a3. 7-6 =  - 1 2 1 . 13 9 =  - 4

4. 9-1 =  8 2 2 . 10-14 =  —4

5. 1 0 - 1  -  - 1 1 23. 15-4 =  1 1

6 . 13-12 «  - 1 24. 8-13 -  5
7. 14-1 =  - 1 5 25. 12-9 =  - 5

J*8 . 6-4 »  2 26. 10-5 =  - 1 5
l<79. 7-2 -  5 27. 5-11 «** 14
1 0 . 8 1 0  -  — 2 28, 14-8 «= 6

1 1 . 11-2 s= 9 29. 15 6 -  9
1 2 . 12-14 -  —2 30, 1 0 - 6 =  1 2

13. 13-15 =  2 31. 6 - 1 1 -  13
la14. 4-7 -  3 32. 15-7 =  8

l015. 5-6 =  3 33. 7-9 *  14
16. 1 1  *3 = 8 34. 7-10 =  13
17. 10-3 =  9 35. 7*11 -  1 2

18. 15-12 «  - 3

Fio. 2. The H-type or cyclic triplet, a b ~ c ,  etc., b a =  — c, etc. Counterclockwise is 
taken as the positive sense.

Each of the above equations represents a set of six (see Fig. 2), obtainable 
by cyclic permuting. Since each such triplet is isomorphic to an H*algebra, 
which in turn  is isomorphic to a D} sphere with a Z) 4  axis of rotation, such 
triplets may be also termed H-spheres.

1 Pertains to H  as well. The equations are indicial throughout. 
10 Pertain to C. All others pertain to N only.
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1 . 2 6 8 9. 3 1 0 13 17. 6 13 3 25. 1 0 14 8

2 . 2 7 9 1 0 . 3 1 1 14 18. 6 14 4 26. 1 0 15 9
3. 2 1 0 1 2 1 1 . 4 6 1 0 19. 6 15 c 27. 1 1 13 8

4. 2 U 13 1 2 . 4 14 2 2 0 . 6 7 13 28. 1 1 14 9
5. 3 5 8 13. 5 6 1 1 2 1 . 7 1 1 2 29. 1 2 14 1 0

6 . 3 6 9 14. 5 7 1 2 2 2 . 7 13 4 30. 13 14 1 1

7. 3 7 1 0 15. 5 14 3 23. 7 14 5
8 . 3 9 1 2 16. 6 1 2 2 24. 9 1 1 4

For example (2 -6 )8  =  2 (6 -8 ), each triplet specifying four such equations. Under­
scores indicate apex members. See Fig. 3.

Triplets excluded by the scheme are ( -  as), e.g., ( 6  ■ 8)2 — -  6 ( 8  • 2).

III. The {-di ) Mutual Aunihilators

Just as com m utators are definable as

co s  {a, b) — a b -b a
and associators as

as s  {a, b, c) =  (ab)c—a{bc), 

we may also define a "distributor” as

di se (a ; b, c) -  a {b+ c)-(ab+ ac).

In commutative, associative, and distributive algebra it is respectively 
true that co—0 , a s= 0, and d i - 0. But in nondistributive algebra the 
distributor is no longer equal to zero, since now ab or ac or both may be 
zero even though neither b, a, nor c is zero. This behavior o f our distributor 
is analogous to tha t o f com mutators and associators, which are also not 
zero in ( — co) and {—as) algebras.
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Thus we have in N-aigebra the possibility of two operators ‘‘zeroing out” 
or forming a mutually annihilating pair, agreeing with our basic ( - d i )  
condition: a -6 = 0 ;  a,b=£0. Such behavior should not be regarded as 
abnorm al; on the contrary it is natural, and preserves the continuity of 
algebraic structure even after the breakdown of the norm -product rule, 
which extends only through Cayley algebra. The fact that the norm of a 
product should equal the product of the norms of the factors is intimately 
bound up with the representability of the product of two sums of n squares 
as the sum of n squares. This representability is in turn directly related to 
the possibility o f continuing pure hypertetrahedral symmetry in higher 
spatial dimensions Such symmetry extends only through eight dimensions, 
the representation space of C-algebra, With nondisiributicn we are entering 
spaces of nine or more dimensions, and in such spaces there is in general no 
longer a homogeneous or single-valued contact number (the number of 
spheres touching a given sphere) in lattices formed of equal tangent hyper­
spheres in such spaces. Also, in such spaces the hyperspheres of a Z>„_* 
lattice section may not touch ali those o f the 1 section.

M utual annihilation, which may be conceived of as the interference of 
two waves of tt phase difference, finds its algebraic expression through 
disagreeing patterns of parity, each operator being characterized by such 
a pattern (see Section IV). In addition to the patterns o f operators i8 
through j'ij, given in the next section, patterns are also assignable to ix 
through i7. Thus we have, where the numbers to the left signify the index,

All nonfitting patterns “ zero out” if in any binary factor pair there are 
three or more parity tracks in any one operator; i \ ^ i  fits with all pat­
terns. Thus /3( —)*f4(-f- = + ), but J j(-) 'ig (-f- +  + ) - G ;  whereas 

+  +  ) =  *’i4 ( +  -  + ) , for here there is no track annulling, since 
the minus in track 1 (the only track that i} possesses) agrees with the minus 
in track 1 o f in.  Thus also /7( — + )-i 'is (— 4— )==— /g(+  + + ) ;  but 
j? ( -  + )  »m( +  “  f  ) = 0 ,  and also i9= 0 = i 8-iio> etc. Hence there are in

1 0 4 -f +
2 + 5 -----

3 — 6 4- -

7 -  4-
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N-algebra 28 +  4(8) =  60 binary combinations of operators that produce 
zero, making 1 2 0  possibilities when anticommutation is considered.

There are structural rules governing the parity-pattern changes and 
assignments. But the basic table o f Section II, showing raultiplicative- 
operator subscript changes, together with the parity patterns given for each 
operator in this and the following sections, plus the basic rules for m utual 
annihilation already given, will enable the reader to  work out any result 
without the extra labor of employing the parity-pattern structure rules.

W ithout entering into further detail here, one may summarize the 
interaction structure by the statement that a minus on any track o f a factor 
reverses the parity o f  the same track of the following factor with more 
tracks, leaving all other tracks unchanged, whereas a plus sign on any such 
track preserves the parity o f the corresponding track but changes the fol­
lowing tracks. Thus ( - ) • ( - + ) - ( + + ) ;  ( + ) • ( - + ) = ( - - ) ;  and
( + + ) • ( ----- - ) —( --------f-); and there are similar variations o f the basic
interaction rules for other parity patterns.

The operator i s  /. s  ^(0) has the effect o f a parity reversor; for example,

<i(0)-f\o(+ — ) — *u(“ + +)»

/i(0 )- /2( + )  =  h i - V ,

*i(0 ) *s(-----) *  -  J<i(+ +  )>
etc.

I f  both operator and operand have the same number o f tracks (with 
different patterns) then each track acts only on its correspondent; opposite 
parities yield (0 ), but like parities in the first track yield (+ ) ,  whereas in the 
second track ( - ) • ( - ) « (  +  ) and ( + ) ( + ) = ( - ) .  Thus

( +  + ) • ( -----) « ( 0 0 ) = ( 0 ) s / j ;  (+  —)• (+  + ) = ( + 0 ) = ( + ) ;

( -----) - ( + - ) - ( 0 - M - ) ;  ( - - ) • ( -  + M + 0 M + ) ;

( - + ) • ( + + M 0 - M - ) ,

this last parity equation referring to the operator equation in Cayley 
algebra, ty*4=  —i3 or j'4  /7 = j 3. When simply the index o f the resultant 
operator is considered, w ithout reference to sign, then parity pattern 
multiplication can be regarded as commutative.
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Similarly, the principal rule for the assignment of parity patterns is that 
in the case of an operator o f even index the parity pattern is the compound 
one formed by adding together the patterns of the two factors o f the index, 
the first being 2 ; and the parity pattern of the operator of next higher (i.e., 
odd) index is the polar or annihilating pattern for the preceding operator. 
Thus / 14 is assigned (+  — -t-) since 14 =  2-7, the patterns of the two factors 
being ( + )  and ( -  + ), which combine to give ( + - + ) .  Then by the sccond 
rule the pattern for /'i5 is polar to the preceding, i.e., ( — +  —). The ultimate 
validation for all these rules is that they optimally achieve a consistent 
algebra that embeds Cayley algebra and differs from it by the minimal 
number of structural and operational changes necessary to conform with 
the minimal type o f nondistribution demanded by the breakdown o f the 
modulus-product relationship in nine or more dimensions.

With algebras beyond N, which have operators o f four and more tracks, 
there is a new possibility: a-0 — b', a, b& 0, °o. This may be called zero 
revival and leads to the fact that i„ i~l may be equal to zero as well for 

I t is also true that our investigations show that viable (i.e., 
unique product) linear algebras are no longer possible in more than 128 
dimensions. It is this phenomenon (which geometrically shows up as two 
or more sphere lattices with the same maximum contact number) which 
forces the appearance o f quadratic algebra in a compound space of 
minimally 256 dimensions. A t this stage a new type of number appears, 
characterized by p z --Q, p ^O . The writer discovered that for Dn, 128, 
these numbers must appear, and only later learned that Eduard Study had 
also deduced (from projective kinematics) the existence of such a number, 
although Study had no idea o f the algebraic application or significance of 
his so-called “ duale N um m er.” From  his method he could not know that 
the algebra demanding such numbers as p 2~ 0 , p ^  0 , has a representa­
tion space o f 128 dimensions and ends the viable linear algebras.

M ore will be said about quadratic algebra later, but this paper is con­
cerned primarily with N-algebra, which has a quasi-isotropic representation 
space o f 16-D rather than higher anisotropic algebraic spaces. Details 
o f the still higher algebras we have found must await later occasions. 
N c is the highest viable (nonschizoid) algebra permitting a finite 
num ber (128) o f elements and the existence of a Laplacian operator,
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which, along with positive entropy, disappears in “cubic” algebra where 
a third kind o f number, q, appears, with the characterizing equation 
qi<t»~ RIP(^)==0, where “ R IP ” means “ real, imaginary, and dual (p) 
parts.” In  the multiplication of two powers o f p  (and a fortiori o f q% the 
addition o f exponents is not in general commutative. Both />°=g°=0,

IV. The (~di) Elements of N-Algebra

1. i'8 (+  +  + ) 5. i'i2( +  +  - )
2. i9{ —  —) 6. /13( --------1-)

3- * io (+ -— ’) * 1 4 (+ ~ + )
4. f'u (- +  + )  8. *is(—* H— )

V. Beyond N* Algebra

A summary: N g -^ N h -^ -N c -s -N n sN 2, i.e., quadratic algebra, after an 
isomeric transform ation which involves the introduction of a new kind of 
concept; the quadratic operator implied by q This algebra has an infinity 
o f elements and a morphology possessing relations with the elliptic 
m odular function. These will not be discussed now. (There is also an 
absolute idempotent algebra to  which one is naturally led by considerations 
stemming from the mfinite-elements algebra above mentioned.) The two 
algebras beyond p  involve q- and w-numbers (see pages 209 ff.).

VI, Commentary

This section, as explained in the Introduction, will be brief, and not 
exhaustive, dealing only with clarifications o f certain salient points through 
the addition of further details.

The first such point concerns an apparently prevalent misconception 
pertaining to the nature of division algebras or those possessing unique 
factorization, that is, (a-b*=0)o(aV b=*0). C. S. Peirce corrected and 
simplified his father’s unwieldy and arbitrary classification of algebras and 
first defined the concept of a division algebra. Charles Peirce also first 
concluded that R, G, and H were the only associative division algebras. 
Leonard Dickson in his otherwise very valuable work on algebra does not 
adequately refer to  Peirce, and indeed commits the lapse in his “ Algebras
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and Their Arithm etics” o f saying that H is the last division algebra. The 
useful and valuable Condon and Odishaw’s “ H andbook of Physics” 
has in the last two editions repeated Dickson’s lapse2  but now as an apparent 
misconception—that quaternions “ are the only hypercomplex system, apart 
from  the reals and the complex numbers, which has no divisors of zero.” 
This would mean that all division algebras are associative, which is not the

7 7
case. Thus in Cayley or octave algebra if £  akik - £  bkik ~Q, then ak—0

* * 0  *=-Q
or bk **0; that is, there are unique divisors, W, W. Sawyer in his “ Prelude 
to  M athem atics" further repeats this repetition of Dickson’s oversight, 
showing the present need for clarification of this point, That need is shown 
also by another omission in the handbook article: the absence there in the 
definition o f Cayley algebra of the nonassociative multiplication and its 
rules, which form the distinctive and essential portion o f the definition of 
th a t algebra.

The correct statement is that, although H is the highest associative 
division algebra, C is the last division algebra, as well as the last distributive 
algebra. After seven nonreal elements, the product o f the norms no longer 
equals the norm of the product of two factors. The norm of such a product 
is then less, thus giving rise to  nondistributive multiplication. Thus if N t 
and N 2 are two numbers in /In s N  (the first complete algebra after C- 
algebra), then if N j-N 2 = N 12, |N J  ■ |N zj > |iV1 2 f. The dot in the equation 
refers to the (required) nondistributive multiplication o f N-algebra, as 
defined in the foregoing tables, whereas the dot of the inequality refers to 
the ordinary multiplication of R-algebra.

Table I has shown how algebras are specifiable by their type o f multiplica­
tion. In the two cases, R and G, indistinguishable by this criterion, the

2 Dickson knew better, as his original discussion o f  quasi-quaternion treatment of 
C  algebra in his “Linear Algebras” shows. A similar confusion arises in a 1963 paper 
(L. Inglestam, Hilbert Algebras with Identity, Bull. Am. Math. Soc. 69, p. 794)— that 
a division algebra must mean R, G, or H. However, division algebras include the 
nonassociative C-algebra. The same error o f omitting C (all stemming from D ickson’s 
ellipsis in “Algebras and their Arithmetics,*’)  is made in a 3965 paper quoting Inglestam  
(M. F. Smiley, Real Hilbert Algebras with Identity, Proc. Am. Math. Soc. (p. 440)), the 
error in both cases escaping the referees and the editors of the Society. This is not a 
reflection implying incompetence, but a simple demonstration of how rushed inform­
ation-processing has become, with inevitable losses in our societal memory.
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additional and im portant distinction between amalgamative and non- 
amalgamative addition must also be taken into consideration. This distinc­
tion is defined by the fact that in R  the sum o f any two summands is express­
ible as a single (amalgamated) symbol, whereas in G  this is not necessarily so, 
e.g., ( 1 + 0  is not so expressible. The reason for nonamalgamation is mcta- 
dimensiona! (see pages 209 ff.).

It is worth noting in passing tha t only the minimal changes o f operational 
meaning are demanded by the successive algebras. Thus the noncom muta­
tion o f H is simply anticommutation (ab~ -b a ) ,  which is the very least 
change that could be made to render the multiplication noncommutative. 
Similarly, the ( - as) multiplication o f C is not even m andatory except in 
certain specified triplets (i.e., those which are not 1-2 =  3, 1 -4 = 5 , 1 -6= 7 , 
2 - 4 = - 6 , 2-5 =  7, 3-4 =  7, 3 -5 « 6 , or any cyclic perm utation thereof);2® 
and moreover, the nonassociative multiplication then resulting is again 
only minimally changed; i.e., it is merely antiassociative, that is, 
a(bc) - ~~(ab)c. I f  we consider a doublet as d  and a singlet as s, ( - a s )  
multiplication may be regarded as a meta form of ( —co), since s - d — — d s .

The negative sign of any result in ( - c o )  may be interpreted as traversing 
the H -triplet in the opposite sense [see the diagram in Section 11(b)}. 
Similarly, it may be shown that given the system o f fixed singlet and doublet 
channels shown in Fig. 4, if we want to shift from flow pattern 1, a(bc) to flow 
pattern 2, {ab)c, we must introduce a, b, and c into the channels formerly 
employed for c, b, and a, respectively.

F ig . 4

2“ M odulo-7 arithmetic (together with the rule that two even members in ascending 
order o f  value on the left-hand side will yield a negative result) directly generates the 
associative subscript equations of Cayley algebra. Similarly modulo-J5 arithmetic 
generates the associative or H*triplets o f N-algebra, in which, however, the additional 
complication o f  partially associative triplets exists, there being 35 H-triplets and 30 
partially associative triplets {see the tables).
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We have spoken of cyclic or H-triplets, which could also be called 
H-spheres. Each o f these consists of three independent nonreal elements, 
thus forming an H-type o f  algebra. Now /, z 3 m i, J, k  may be considered as 
generating mutually perpendicular circuits (each containing the two real 
points ± 1) o f unit radius such that the subscript equation 1 2=* 3 and its 
cyclic permutations governs the sense of all three rotations. (We noted this 
in a 1962 lecture at Naples, and it is discoverable in Hamilton actually—- 
before Du Val’s interesting book on quaternions and 3-space rotations 
appeared in 1964.) If  we wish to  remain entirely in £>3, it has not been 
generally noted, however, that the ^-circuit must change size, since the i} 
or ^-circuit m ust contain the points + l= /c ° = /c 4m and — 1 = k 2=k*mJh2, 
where m  is any integer. Thus the A:-circuit expands, like a cone, with a base 
radius of zero (at /c°) to one o f unity (at k 1 =*k), then shrinks again to zero 
at k 2 *= — 1 , the base plane of the cone moving so that its center traverses the 
real axis from + 1  to — I as k^-*-kl -+ k2, the radius of k ] being unity as 
already staled, and the slant height o f the cone remaining unity, with vertex 
at the origin. At k ±l the altitude is zero, and the cone, a circle.

However, springing from the multivalued nature of y / — 1, H-algebra 
actually demands that / 1>2 i 3 be all on the same footing, which means a fixed 
sire and position for all three circuits. I f  this requirement is thoroughly 
imposed, 3-space is no longer adequate, and we minimally need three fixed, 
mutually perpendicular unit circuits all intersecting in the points ± 1 , which 
means a 4-space arrangement, such that only two /-circuits plus the real 
axis, / 0  (i.e., ° r  <0 ,2 ,3) could be represented in I ? 3 at any one
moment. Thus quaternions do not exactly map 3-space rotations.

Since il and z2  imply or we have, in our subscript notation,
( l,2 )-* 3 . Similarly, (1 ,2 ,3 ,4)->(5 ,6 ,7) and (<*;&= 1 ,2 ,. . „ 8 ) -* jMOi ,5. 
Thus the (Z^th /-element generates the algebra A{2n+1) from A(2)n. Thus 
O W i ) - ^ ;  (G,<4) -> C ; and (C ,ig)~^N , n being 20,I,2,3' \  respectively, for 
R, G, H, C, and N, the number of /-elements in A(2n) being 2 " - l .  This 
phenomenon is the basis of the notion of a complete algebra, which has 
been previously defined.

Since a ZVsphere can have three mutually perpendicular great circles 
all intersecting a given pair of poles, any fully or cyclic (05) triplet may be 
called an H -triplet or H-sphere, each such H-sphere containing a quaternion
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algebra. N-algebra contains 35 H-algebras, just as C contains 7, The 
structure of N-algebra is extraordinarily richer and more complex than 
that of C, and far supersedes the richness of C with respect to H. There is 
a tremendous gap between the distributive and the nondistributive algebras.

It has not hitherto been realized that the norm-of-product/product-of- 
norms inequality characterizes ( - d i )  multiplication, nor that this in turn

implies a volume-shrmkage relation among hyperspheres. Thus

where the ak are all integers, is the modulus (positive square root o f norm) 
o f a number in A(m), i.e., a linear algebra of m-elements. But it is also the 
radius o f a Z^-sphere, as the Dm distance element proves.

Thus the relation n  (norms) =  n o rm (n )  that characterizes all distribu­
tive algebras means that r i 2 *r2 2  == rf2 or where rlt r2, and rn  are 
the radii of three Z)m-spheres corresponding respectively to the two numbers 
and their product. Hence H-multiplication involves four-dimensional 
spheres, and C-multiplication involves spheres of eight dimensions.

From Table I and its footnotes, it is clear that the maximal number Tn of 
equal tangent hyperspheres that can fit about another central sphere o f the 
same radius has an intimate connection with the number o f units in a given 
linear algebra. It is hence o f some interest to make brief mention o f these 
tangent-sphere groups.

The writer has been interested in this problem since 1948, and approached 
it from the point of view of the convex polytope, which he called the polytope 
o f centerj,  that might be formed by joining the centers o f the shell spheres 
o f a tangent sphere group. This led him to the discovery that contrary to 
the usual statement that the 24-celled regular polytope of Z>4  has no 
ancestors and no descendants, it actually has both; for it is one of an 
infinite sequence o f convex polytopes which the writer termed the hyper- 
cuboctahedra, since, like the cuboctahedron (the D } member of the family^ 
all the other members also have a circumradius equal to any edge. This 
family is formed by the hypertruncation of the (« —2 )th element of the 
hypercube. By this process the cuboctahedron, the 24-cell (the last regular, 
finite member of the family), and a 42-celled Ds figure all arise as the 
representatives o f this polytope sequence in three, four, and five dimensions, 
respectively. The family arises also from truncating hyperoctahedra.
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W hat makes these three members most interesting is that they are also 
the packing polytopes (P 3 ,4 ,5) or polytopes of centers for D 3ti s. The author 
later found that the family of hypercuboctahedra could also be regarded 
as the ordinary linear truncations of the hyperoctahedra. The author then 
went on to define the more general family, P„, by the condition that (1) 
0r**e; i.e., circumradiuss=edge, and (2) N 0 =  max, i.e., the number of 
vertices to be a maximum, subject to  the first condition. This is a much 
more fundamental sequence of polytopes than the hypercuboctahedra; and 
the writer learned that they had all been specified through n =  8, although 
never realized to be members of one family. Indeed, although they had all 
been separately discovered by 1912, even in 1930 their connection with 
dense sphere packs was not realized, nor has the family been hitherto 
defined.

In a letter (M ay 1965), Professor H. S. M. Coxeter kindly noted that the 
packing poly topes’ existence was implied by his 1951 paper in the Canadian 
Journal o f  Mathematics, p. 414, although not realized as such or defined by 
a family. In Coxeter’s valuable graphic notation the members from n = l  
through « «  8 can be written

a notation which can be regarded as mapping whole dimensions into points, 
as does (in a different manner and independently arrived at) the writer’s 
archemorphic notation for classifying differential equations (/7 , p. 256). 
That W0(PS) =  240 was first discovered by the genius of Thorold Gossett in 
1897, although the connection of the number 240 with the eight-dimensional 
tangent sphere group ( J s) was not realized until H. F. Bhchfeldt’s brilliant 
work on minimal quadratic forms in 1935; and even thereafter the geometric 
connection with Gossett’s work was slow in coming, Coxeter being the first 
to  realize it in an insightful paper (1946) which linked tha t number also to 
C-algebra.

In 1963 the writer found the following results, the summary formula of 
which is quoted in (8, p. 66).
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Define T„ as the maximal number of equal tangent hypersphcres that can 
all touch another sphere of the same radius in ^-dimensional parabolic 
space, D„. Then for 1 < n ^  8 ,

where {tn} is the least integer containing m.
Coxeter (“ Regular Polytopes,” 2nd ed., 1965, p. 234) requires five (the 

last three being quite complicated) separately derived equations and 
expressions to  gain h, the period o f the product (order o f multiplication 
irrelevant) o f the finite symmetry group generated by reflections o f a 
hypertetrahedral fundamental region. These groups are extremely im ­
portant, are all irreducible, and can extend only up to  eight dimensions, 
inclusively. After n=*8 , the fundamental region is reducible or factorable, 
and there are no more such groups. The graph is then disconnected.

The expression (in the above formula) multiplying n is h for these groups, 
thus furnishing the periods of the products o f their generators in remarkably 
uniform, concise, and simple form using one equation only. The geometric 
basis of our expression for T„ extends very deeply into the fundamental 
nature o f irreducible groups generated by reflections. The expression in 
brackets contains the heart of the matter, and represents the maxihial 
number plus one3 of hypertetrahedral vertices (i.e., the kind with three 
cells, all also o f hypertetrahedral shape, about a vertex) that can be formed 
given 2n~2 hypertetrahedral cells. That number of cells in turn is the number 
of cells bounding the hyperoctahedron in (« — 2) dimensions . 4  Thus the

3 The extra “ 1” refers to the n (« + l)  vertices always formable in n dimensions by 
translating the ( « + 1) cells o f  an w-dimensional hypertetrahedron outwardly along their 
respective altitudes (drawn from the center o f  the figure to the centers o f  each cell).

* The regular D„ octahedron has the symmetry o f a hypersphere in D„ with all its 
(n -  2) mutually perpendicular axes of rotation drawn with respect to a given equatorial 
plane. The (2/i — 4) poles o f  such a sphere have the symmetry of the 2{n -  2) vertices o f  
an (/i-2)-d im ensional octahedron, since the n diagonals o f a regular D„ octahedron 
are all mutually perpendicular. In the prior equation, $T„—the number o f diameters in 
T„— is the number o f  hyperplanes o f symmetry ;n the irreducible group of period h *= TJn  
generated by reflections. The fundamental region for such a group is always a hyper- 
tetrahedron in elliptic or parabolic space, and such groups extend only through 8, as 
mentioned above.
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previous equation by no means simply epitomizes existing information on 
these groups but provides a new and fundamental insight into the nature 
of finite groups generated by reflections, as well as a dem onstration of the 
unity of the first eight dimensions in concise, elegant fashion.

From  our formula, N 0(Prt) =  2, 6 , 1 2 , 24. 40. 72, 126, 240 for 1 ^ w $ 8 , 
which are also key numbers in the theory of quadratic forms, sphere packs, 
and tetrahedral symmetry groups. It is a consequence o f their definition 
that in all these convex polytopes the number o f edges meeting at each 
vertex is the same in each such polytope; i.e., 2 N J N q~ N \ io- Also all the 
dihedral angles of such a polytope are equal, the dihedral being defined as 
the angle between two Z)*_i elements. These facts in turn imply that each 
vertex can be surrounded by not more than two kinds of surface ceils cj and 
c2, so arranged that in the hypersurface pattern all d ’s are adjoined at all 

2  elements by c2's, and vice versa. For n - 2  or 4, Cj *=c2, and we have all 
a j ’s and all jSj’s, respectively, as surface cells, that is, a regular figure; in a 
more trivial sense, n*=l also produces a regular figure. After n -  4 this 
phenomenon can never occur again in any finite positive dimension, and in 
all other cases P„ must be a special type o f Archimedean figure such that if

be the angle at the center between any two vertices, ^6 =  vr/3 radians.
After /3 =  8  tremendous changes occur, in line with the vast shift from 

distributive to nondistributive algebras. Put in terms of the theory of 
sphere packs, the polytope of centers is no longer convex . 5 The writer’s 
findings (77, pp. 230 and 262) for tangent sphere groups with n >  9 refer to 
the maximal numbers o f equal tangent spheres surrounding another of 
greater radius such that the difference between the two radii is minimal, 
since the two radii can no longer be equal and the polytope remain convex. 
The writer’s previous work was done under the assumption o f a convex

5 N ote that the edges o f  a “polytope o f centers,’' and hence o f a “packing polytope” 
(P„), are all lines o f centers between pairs o f  tangent (hyper)spheres in the T„ (hyper)shell. 
A packing polytope, as will appear from the exposition, is simply a maximal-vertex (N0 
max) polytope o f centers for a monoradial (hyper)sphere pack in a given D„, “mono- 
radial’' referring to the fact that both the shell (hyper)spheres and the central one all 
have the same radiys. When the radius o f the central member is different from that o f  
the shell members, all o f  which are alike, we have a bitadial pack, also considered in 
pages 192 ff. The packing polytopes summarize in their structure the sphere-packing or 
lattice possibilities o f  their dimensions.
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poiytope o f centers as his theorem that for n > 8 , the polytope o f centers 
is no longer convex, was only recently found. The proof of this theorem 
in quickest form may be made to devolve upon the equation

4 csc-  \ /n ~  sec- 1  n =  0,

which has as its only real solution n =  8 .
This equation represents the last finite member o f our alphabet honey­

combs, a remarkable series of hyperspace lattices, all the cells of which 
consist only of alphas and betas,, i.e., of regular hypertetrahedra and 
hyperoctahedra; hence our designation “ alphabet.” Where the following 
coefficients represent numbers of dihedral angles of the indicated polytopes, 
we have for the six finite members of the series (all the several expressions 
in parentheses being equal to  2-n radians), in D 2, D h D4, and Z>8:

(6 «2) -  (3«2 + 2 & ) -  (4j32) -  (2« 3 +  2 f t)  =  (3/34) -  ( 1 « , + W .

There is also a seventh member belonging to (2aOT+ lj8 w =  2*r), since 
the dihedrals are now, respectively, nj2  and n,

The reason for the great symmetry and density o f the packing structures 
in D i and D$ is intimately connected with the following facts, the significance 
o f which has not been noted: the circumradius of the Z>4  cube (y4) is equal 
to its edge, and in it is equal to  the face diagonal, Thus the basic symmetry 
possibilities of the cube are fully exploited at n -  8  in so far as single straight 
lines can be related. There is one simple symmetry possibility, but even this 
involves two perpendicular straight lines related to a third line; the circum- 
radius of y  J 6  is equal to  the sum of the two sides of the isosceles right triangle 
whose hypotenuse is the face diagonal. This relationship breaks the 
simplicity o f the single linear pattern, of which Dt is the last representative; 
however, X>l(S is still simple enough to be the highest dimension in which a 
simple ( - d i )  algebra may exist, i.e., a nondistributive algebra without the 
complication o f zero revival, that is, without a- 0 = 6 , where ab& O , oo, but 
with a -6 = 0 .

There is not space here to enter into the indicated processes, which rest 
upon derivable rules of zero formation. Suffice it to say that six levels o f 
zero arise through the interaction o f nondistributive operators in N  through 
N n algebra, these six falling into a hierarchy of three parity pairs. Hence
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six kinds o f zeros result, which are indicated by the Following table, showing 
alternative symbols. These have relevance in quadratic algebra.

TABLE II

T h e  S ix  ZeRos o f  (-d i) M u l t i p l i c a t i o n  (cf. Sections III a n d  IV)

Thus ( +  "t" + )  —*(000); (000)(000)->(QO 0 ) J (O O 0 )(Q 0 O ) —*
(© © © ), etc. It should be noted that © and © do not interact, each contain­
ing a self-polar system of rotations as the fourth symbols of rows 5 and 6 
show. In Nc-algebra is thus attained the highest level zero o f the hierarchy, 
i.e., © or © on each of six “ tracks” or channels (a “ 6-track zero”), the 
( —di) operators in tha t algebra being able to have as many as six channels 
or guides for their parity waves; whereas N , N r„ and N H may have only 
3 ,4 , and 5 parity wave channels respectively. Six channels is a limit that 
may be compared to a coaxial cable formed by six helical strands around a 
core o f equal diameter. There is not space for further development here, 
but class numbers of higher cyclotomic number fields are relevant.

Although nondistributive multiplication and its possible algebras have 
not hitherto been considered, they constitute as fundamental and basic an 
extension o f mathematical thinking as the extension from positive to  nega­
tive, and then to complex and hypercomplex numbers. W hat has delayed 
such specification was the unreasonable fear of a non-division algebra, that
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fear being no more tenable than it was in number theory, where Kuxnmer 
freed us from  confinement to algebraic number fields with unique factoriz­
ation in terms o f real or complex numbers.

The same problem arose in vector algebra. Thus if v and v' are two 
perpendicular vectors, and vx is another vector not perpendicular to either, 
we have for the scalar product W y ^ v j ,  but v(v' + vt)=* v2, since the 
scalar product of two perpendicular vectors vanishes. Thus nondistribution 
may arise in vector algebra, rendering vector quotients nonunique, since 
any other vector vp, perpendicular to v, would yield v-vp=0.

On another occasion (17, p. 216) we have also shown that ( — di) multipli­
cation enters into the theory o f nonlinear operators, with the consequence 
in electronics that undistorted modulation is not possible with a nonlinear 
operator, and neither are superposition or classical harmonic analysis; and 
we add en passant tha t distorted modulation is deeply connected with any 
theory o f mathematical esthetics, a field that has interested mathematicians 
from ancient times, notably G. Birkhoff in our times, although Birkhoff 
did not reach the connection between nonlinearity and esthetics. In  this 
connection the volumes brilliantly edited by G. Kepes o f the M assachusetts 
Institute o f Technology (published by Brazilier, New York) on structure 
and the visual arts should also be noted, even though not quite relevant to 
the present technical bibliography. They reached the writer’s attention 
after this paper was in press and hence could receive only brief mention. 
[See also (17, p. 227 ff.) and pages 200 ff. of this paper for relations to 
biological patterns and coding structures ]

Professors Antoniewicz, Conti, and Moreau have, each in their own 
way, stressed the relation of convexity to control. We are suggesting that 
this relation can be made more precise, analytic, and applicable by the 
following Theorem : The unit packing structure of a parabolic dimension n 
governs the controllability problem in such a space. Lemma : T hat packing 
structure is in turn specified by the maximum number T„ o f equal tangent 
hyperspheres in D„ that fit about another o f equal radius; then T„**N0(P„), 
defining the polytope o f  centers by its number of vertices; that all its edges 
are equal follows also.

There is a natural hyperplane separation of these sphere groups (cf. 
Conti’s “ ball of controllability’') which we characterize thus: two “ polar
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caps," cach o f £ (r„ —r«_j) spheres, are separated by an (« ~  l)-hyperplane 
o f “equator”  7V i sphere units.

Concluding our previous remarks on sphere packs, we note that it is 
therefore now possible by means of the concept of the polytope o f  centers 
to unify the geometry of all sphere-inscribable polytopes o f equal edge in 
terms o f rigid groups o f tangent spheres (radius r) about a central one of 
radius R, I f  0R  is the circumradius o f such a polytope, whose edge is e, then 
[2(0 /? ) / e ] - 1 — Rfr. Thus Rjr determines the polytope. I f  R < r ,  we have all 
the regular figures (except y 4  for which R - r ) , and for « < 8 , the Gossett 
polytopes. If R = r we have all the packing polytopes P„, all the truncated 
cross polytopes (it is interesting to note that tfi„-P„  for « =  3, 4, 5), and 
all the expanded simplexes. For other ratios of R and r we have the truncated 
expanded simplexes, and the hemifigures o f these truncations, all those 
ratios being o f the form Rjr, as are all y n for n>  4. The hemigammas for 
n > 8  have R > r;  for the hemigamma n =  8 , R ^ r ;  and for « < 8 , R < r. The 
240 vertices o f P 8 are thus obtainable by compounding a hys and a truncated 

(128 + 112= 240); this is believed to be a new construction.
Thus all the Archimedean figures are subsumed under the theory o f rigid 

configurations o f equal spheres on a central sphere of usually larger radius.
The ratio R j r ^ y / 5 is particularly interesting. In D2 it yields the decagon, 

in the icosidodecahedron, and in D4 the 1 2 0  cell as well as a figure of 
96 vertices (see below).. It appears to be the oniy finite ratio other than unity 
which generates polytopes that, like the packing polytopes, possess 
analogous sections in lower dimensions which are ail maximal-contact 
packs for that ratio. Thus with R jr - y /S ,  no more than 10 spheres fit 
about 1 in D2', no more than 30 in three dimensions; and no more than 
120 in Z>4. In five or more dimensions, the ratio no longer yields a rigid 
pack.

In four dimensions, rigid packs (for R ^ r )  can be formed from 16, 20, 
24, 32, 96, 600, or 720 equal spheres. It is interesting to note that the group 
o f 96 has also the ratio jR/r — V5. Similar theorems may be enunciated for 
the higher dimensions with this theory. In all dimensions (n > 2) the number 
o f rigid packs is finite, as is the number of viable ratios Rjr.

Thus the subject o f generalized sphere packs, as here outlined, has an 
intimate connection with the theory o f polytopes. The group 360-about-l
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in D9 is the "first” convex figure in that it is the first convex pack in D 9 with 
the number of contacts to  the central sphere exceeding 111 and with 
(R (r)— i a minimum. This group forms a polytope o f centers that could be 
called a i.e., a hemitruncated, expanded D9 simplex, using the
notation introduced by Coxeter in his 1930 paper.

One can go further and treat the theory o f all equal-edged convex poly- 
topes, whether sphere-inscribable or not, in terms of maximally dense 
packs o f equal spheres, using the notion o f a polytope o f centers. Similarly, 
equal-edged nonconvex polytopes may also be treated and generated, but 
there is no room here for the interesting details. We shall hereforth adopt 
the names alpha, beta, gamma as more convenient than the relatively 
awkward "simplex” or (hyper)tetrahedron, “crosspoiytope” or (hyper)- 
octahedron, and “ measure polytope” or (hyper)cube, respectively. Indeed, 
“simplex” is somewhat of a misnomer. For the (hyper)tetrahedrons are 
one of the subtlest and most elegant of all polytopes, ensuring as we have 
seen they do that the eighth dimension is the principal key to the theory of 
structure.

Related to this fact is the writer’s expression (^ r) I/2/g ( g ~ 9 - n ,  n refer­
ring to D„, and d n being the nth triangular number, where <di =  l,
J  3 =  6 , etc.) for the governing structural ratio of circumradius to edge in the 
dimensionally successive vertex-truncation figures o f P„ (« =  9 yields a 
lattice or infinite polytope). This series o f polytopes was first discovered by 
the geometrical genius o f Thorold Gossett in late 19th century England, and 
called by him “ the wedges” ; although he did not recognize the series as one 
o f successive vertex figures nor as one related to the highest possible convex 
polytope of m onoradial centers, our P g.

During an interesting and stimulating conversation in London after this 
section had been written, but in time to include this comment, Professor 
C. A, Rogers kindly brought to the writer’s attention his recent paper 
(jMathematika, 1963) on covering a sphere with spheres. Here Rogers, 
despite excellent results, reaches an impasse of sorts in considering a 
problem which in terms o f the present theory reduces to that o f a polytope 
of centers with R  > r = 1.

On p. 157 Rogers states frankly that “ the following results . . .  are not 
completely satisfactory.” Thus when R > n  log n, Rogers concludes, “I do
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not see how to obtain a really satisfactory form of theorem 1 in this case.” 
The present work suggests that the initial assumption R > r, r =  1, was too 

restrictive, and moreover, that consideration of the ratio R/r, and not R 
or r considered separately, unlocks the algebraic geometric morphology 
of this problem and situation. The method and notion o f the poly tope of 
centers is likewise relevant, as well as the im portant theorem that for n 9, 
P„ is nonconvex. There are two other im portant considerations in this same 
problem which are directly connected to the situation for large n. The first 
is an interesting theorem of the writer resting both on the Coxeter-Rogers- 
Schl&fli upper bound and on the writer’s formulas for sphere packs with 
convex poly tope o f centers:

The second consideration referred to above grows out of Rogers’ funda­
mental result of 1958 (Proc. London M ath . Soc .) based upon findings by the 
great Ludwig Schl5fli. Rogers then showed that the volume ratio of the 
part of a„ taken up by («+ 1) tangent hyperspheres with their centers at the 
hypertetrahedron’s vertices to the whole volume o f «* is, asymptotically, 
a„={nle)2~niz, i.e., lim on~ 0 , more simply, c t ^ O ,  a result not explicit

in Rogers’ paper.
The empty portion o f the simplex, i.e., the «-dimensional hole, may then 

be calculated to be asymptotically given by

Thus our theorem—that for large n the empty portion increases a t the 
expense o f the filled portion in the ratio (ejn)2”12, and that although the D„ 
content o f  a* approaches zero as n -> the portion of <x„ filled by the (n + 1) 
hyperspheres becomes progressively less with regard to the empty space, 
and this ratio  approaches zero as  «-> » .

Therefore the unusable surface o f a D„ sphere, with regard to a maximal 
number o f equal spheres tangent to its surface, increases halfexponentialiy

Hence
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with n. It is the lack of taking into account this unusable part o f the hyper- 
surface that makes the Schlafli-Rogers-Coxeter upper bound too high. That 
that bound is valid as far as it goes, however, has been demonstrated by the 
writer from the fact that the vertex-content ratio is greater for the alpha 
than for any other regular or partially regular figures. This result was 
communicated to  Professor Coxeter in October 1965, about a  month after 
it was obtained.

Before closing this section o f commentary, a  few points should still be 
mentioned, such as that on page 176 the table o f the 35 H-triplets has 
been deliberately “ scrambled” to provide an exercise for the reader 
interested in gaining more familiarity with the indicia! equations o f  N- 
algebra. By the use o f modulo-15 arithmetic in the subscript equations, the 
table may be arranged in perfect sequential order. {Hint: Use the type o f 
subscript equation n 'tn = r  or - r  with « < m  and both n, m  odd or even, 
respectively, where maximum r is the sum modulo 15 o f n and m  or a lower 
num ber determined by selection rules necessary for self-consistency.) This 
table involves 35 separate, but related, H-type algebras and one C-algebra. 
Consistency with both the C and H  algebras embedded in N serves to derive 
the multiplication table. The eight ( - d i )  operators arise from the simplest 
type o f parity wave oscillating about a neutral axis; namely, the eight 
permutations o f two things ( +  and - )  taken three a t a time, for three 
moments or points, are minimally required to  establish oscillation or 
curvature. The eight forms fall into four pairs (cf. Section IV):

It should also be noted that the table in Section 11(c) exhibits the partially 
cyclic triplets whose linearly projected flow patterns ( ^  denotes vertex of 
triangle) are
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instead of

as in the (fully) cyclic or H-tripIets, thus allowing two categories of n on- 
associative multiplication by means o f two triplet types tha t may thus be 
termed hyperbolic and elliptic, respectively. The linear “ triplet” o f Section 
11(a) can in the same spirit be termed parabolic, possessing the vertex 
pattern

The three patterns may be designated as hyperbolic or self-opposing; 
elliptic o r self-affirming; and parabolic, equilibrated, or mixed, respectively.

Similarly, R-algebra, where, w being a unit, u2= 1, may be termed 
“ elliptic” ; all the complex and hypercomplex algebras, wherein u2= — 1 
are thus “ hyperbolic” ; and the quadratic algebra to which N n  leads 
includes h2= 0 , i.e., “ parabolic.” There is a fourth category of unit, and 
hence o f number, in  the algebra with an infinity o f elements where, 
although u*~Q, j«| =  l. This last category may be called "loxodrom ic.” 
This terminology is derivable from isomorphisms to linear transformations 
o r conformal representations, and the traces o f their matrices, the matrix 
being loxodromic if  the trace ( s  sum of elements o f principal diagonal from 
upper left to  lower right) is not real.

We have already noted that every matrix represents a hypercomplex 
number. In general i„ has a (2m_1)-element real matrix representation in all 
algebras A(2m) ,m £ n .  Thus i\ =  i requires a 4-element real matrix, whereas 
i3 as k  or i2 s  j  requires a 16-element real matrix. Thus, for example,
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(Another matrix identical with i2 is similar but smaller, containing ± i 
as well as + I and 0.) It is not difficult to decide which notation is most 
elegant and least cumbersome. Thus hypercomplex numbers can be 
regarded as embedding in themselves entire systems of linear equations. 
The principal diagonal (upper left to  lower right) of all real-element matrices 
referring to hypercomplex numbers is null.

The author found that p1 =  0 was demanded when hypercomplex numbers 
attain a surdimensionality of 8 , the mth surdimension being defined as a 
higher hierarchical form o f a (2'”)-dimensional parabolic or Euclidean 
space. These surdimensions are very im portant in defining what we have 
called “complete algebras.” In terms o f them, real, Gaussian, quaternion, 
Cayleyan, and N-algebra are 0-, 1-, 2-, 3-, and 4-surdimensional, respec­
tively. Beyond 4 surdimensions, as already indicated, there is a hierarchy 
of zero revival in successive complete algebras, until finally /?2 —0 , / ? # 0 , 
is attained, in 7 surdimensions. At this point linear algebras give way to 
quadratic algebra and then cubic algebra (see Section IV). There is reason 
to regard these surdimensions as logical closures with respect to hierarchies 
o f operational structures composed o f independent categories (cf. (18), 
Addendum).

Beyond the first ( -  di) algebra (i.e., N) there lie a t least two higher forms 
o f nondistribution, which may be symbolized as providing the results 
a -O ^b  and a2—0, respectively, where neither a nor b is zero or infinity. It 
was with great delight that, after having confirmed the necessity fo rp 2 = 0 , 
p ^ O , in higher ( - d i )  algebra , 6  we found that Eduard Study had in 1900 
arrived at the same type of number from considerations o f nonreal projec­
tive geometry, arising originally out of his new approach to kinematics. 
These numbers, called dual numbers, have been regarded more or less as a 
mathematical curiosity, with no inkling of their transcendent importance 
in the theory of nondistributive algebraic structures.

The simplest kind of number characterized by the fact that the square o f 
the unit is minus unity, is termed an imaginary number and the form  o f its

* Specifically in Nc . the algebra o f metacomplex numbers o f  the p- type with V  element*,
i.e ., the 7th surdimension or algebraic field, all fields beyond the 3rd surdimension being 
nondistributive.
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unit power field is a unit circle on the complex plane. Similarly, the hyper- 
imaginary numbers (i», 1 < n) form a series of hyperplanes, the entire series 
constituting what we term the hypercomplex plane. The kind of number 
characterized by p 2- 0  w herep  is the unit, is related not to simple circles, 
but to  a pair o f tangent circles o f unit diameters. There is a relation here to 
the complex function w = Z ' n, which yields a family of tangent circle pairs 
for « « 1 .  In Cartesian coordinates one such pair, representing the unit 
field form o f this second kind of higher number, is given by (x 2 +  y 2)2/y2 =  1 , 
the radius vector for an angle of radians from the real axis being given by 
r=»sin Q, and hence p^= p lih r (1 — r2)112 + pr2 = sind(cos0+p$in&). Thus 
p ° = 0  and p 2= 0 , which distinguishes /?- from f-numbers.

Just as all the ^-operators determine the hypercomplex “ plane,” i.e., 
a  hyperplane o f n nonreal independent lines and one real line, so the p n 
numbers determine a metacomplex “ space,” the rotation planes o f all 
the p„ being perpendicular to the hypercomplex plane. The unit field form 
o f an j>operator is a unit circle, and that of a /v o p e ra to r, two tangent 
circles o f unit diameter. In plane perspective hypercomplex space can be 
represented as a circle-ellipse family, metacomplex space as a double circle- 
double ellipse family.

These p numbers, which we arrived at through a theory o f algebraic 
structure, and which Study arrived at through a kinematic, projective 
analysis inspired by some work of Laguerre, have, as J. Griinwald pointed 
out about 1906, an isomorphism with the quadric cone in Study’s scheme, 
although we have found the double circle family, derivable from the 
complex function already given, more useful and accurate for our purpose. 
Actually, the two views can be reconciled when the double circle curves are 
regarded as the vertical sections o f an infinite sequence o f what we have 
previously termed umbilicoidal shells in a 3-space. These umbilicoids are 
intimately related to the even negative dimensions7 and to our theory of

7 A  simple umbiiicoid is given by (x 2+ y 2+ i l)2l(x t + y 1) ~  1. The content of odd 
negadimensionai umbilicoids is zero, just as that o f even negadimensional spheres is zero. 
Conversely, umbilicoids exist in the even negadimensions, whereas spheres do not The 
two are in this sense complementary forms. The (hyper)surface o f an ^-dimensional 
umbiiicoid is given by
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half'integer genus, with corresponding Riemann-surface representation. 
A s the over-all horizontal diameter o f  these shells tends toward infinity, the 
finite portion xn the neighborhood around the origin tends to a quadric 
cone, much in the same way, as we have previously pointed out (17, p. 258, 
note), as a finite portion o f  an infinite elliptical torus may tend toward a 
hyperbolic paraboloid.

It is interesting to  note here that hyperspirais m ay be defined as projec­
tions on a i hyperplane o f  hyperconical helices in D„. Thus the complex  
numbers may be ordered in terms o f  an Archimedean spiral o f  infinitesimal 
pitch; and it is just as incorrect to  state that complex numbers cannot be 
ordered as that the points on such a spiral line cannot be ordered, radius 
vector and angle being given first and second priority, respectively, thus 
generating an infinity o f  numbers, all ordered for each member o f  a like 
infinity o f  radii, also all ordered.

The hypercomplex numbers can likewise be ordered by the hyperspirais 
we have defined above, with a hierarchy o f  priorities assigned to  radii and 
angles in successive dimensions. Professor Charles Loewner, in his invited  
lecture before the American Mathematical Society in 1964, cam e close to  
such an ordering, but reached only the stage o f  hypercones, and thus

where n is the dimension (n may be negative) and r, the radius o f the two generating hyper­
spheres. Similarly, the content of an ^dimensional umbilicoid is given by

Thus, w henr=  1, n = 3 , we obtain a surface of 4ir2 r2 and a volume oi2n2r>, tallying with 
the equation given above. The negative dimensions are deeply related to the nature of 
frequency, and hence, of time, rather than space. They have not been hitherto considered. 
D-, is by far the most important of all negative dimensions. In this connection, by use of 
the Riemann zeta function we have obtained the result that

where *3:0 and SK.asl + i  + i  +  i + | +  the famous harmonic series. Likewise 
( —2)!=  — ( — 1)’. and ( — I)!-*!  *-+4.^+^+ • . . .  Thus the first three nega- 
dimensions are the most important, where n is any positive integer.

( - « ) !  =  ( - 1 )" '1 S<d(n~l)l and ( - 1)!/(—« )!= (—

Thus D-1  enters into the nature of Euler’s constant, as n! and Dn are closely morphologic­
ally related. That ( —a?)!=0 follows also.
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such “ inform ation” than a meaningful message. This observation leads to 
the interesting theorem that a cipher message originally composed in some 
language has less Shannon inform ation than a message of nonsense 
syllables; i.e., any cipher must preserve some form o f the original pattern 
of thought, and hence less unexpectedness than complete nonsense.

The principal reason for mentioning these facts is that a random  covering 
may be more economical than the most economical one-rule lattice covering. 
We have introduced the italicized adjective, feeling that it lies a t the root of 
the apparent paradox, for random  coverings of maximal efficiency could 
be defined only by shifting rules of formation. It is this more flexible strategy, 
as it were, that accounts for their possibility o f being more efficient than 
even the most economical lattice covering, which is based on a single rule 
o f formation.

VIII. Other Applications

Aside from the applications to geometry and com puter coding and 
programming already mentioned, there are im portant relations both to 
the theory of numbers and to physics.

We shall mention the first very briefly. As long ago as 1880 Henri 
Poincare had very masterfully pointed out that the ellipse and the hyperbola 
were the geometric keys to the structure o f quadratic number fields based 
on y / - K  and s /K , respectively. It was also known by the late 19th century 
tha t the ideals of a  quadratic algebraic number field (of multiple factoriza­
tion) were isomorphic to lattices of constant mesh area. In the simplest 
cases such lattices are planar, thus suggesting at once the machinery o f 
elliptic functions. In more complicated cases they may exist on specially 
defined surfaces which the writer has found are intimately related to his 
“ curvilinear elliptic functions,” which may be defined very briefly as more 
generalized elliptic functions based on curvilinear parallelograms. There is 
an extension to higher (than quadratic) number fields and their correspond­
ing higher-space lattices, both flat and curvilinear, for which we have no 
space here, except to say that multiperiodic and hypercomplex functions 
are involved.

Such a development relates the theory o f algebraic number fields to
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packings of hyperspheres, the centers of which would be the lattice points; 
ju st as we previously saw that such packings were intimately connected with 
the theory o f hypercomplex numbers and hence with the structure of 
algebras.

The m atter goes even deeper, since matrices may be treated, often with 
great gain in succinctness and elegance, as hypercomplex numbers. M ore­
over, the theory of finite groups in its most recondite aspects is related to 
the notions of a group of tangent hyperspheres and its polytope of centers. 
We have already seen the connections with error-correcting codes.

Thus groups o f tangent hyperspheres, determining as they also do the 
packing structure o f any given dimension, constitute one o f the most fertile 
and fundamental domains o f mathematics. Algebraically, hypercomplex 
numbers possess the same fundam entally, determining as they do even the 
nature o f the arithmetic operations that may be performed upon them or, 
more accurately, in which they may be engaged. For the nature of a kind 
o f number determines the nature o f its operations. Since mathematics itself 
m ay be defined as the science o f numbers8 and their operations, it is clear 
tha t mathematics may be essentially enlarged and deepened only by 
enlarging and deepening our notion o f number. In  this sense all o f m athe­
matics after the ancient Greeks grow out o f minus 1 and its square root, 
function theory included. Turning to physics, we now see why quaternions 
are becoming increasingly im portant despite their comparative neglect, 
although they were actually introduced through the back door as the basis of 
the vector product, the rules of which for 3-space repeat exactly the rules for 
quaternion multiplication of the unit vectors, except that their squares are 
zero instead of minus 1. This fact is the basis o f Du VaPs excellent observa­

* The fallacy o f Bourbakian set theory is one o f reductive om ission: distance is ignored, 
although a distance function, separating the members of any set and allowing them to be 
distinguished, is implicit in the very notion o f set; and distance is number, which is thus 
shown to be the basis o f distinguishability and hence o f definition. The distance may 
be governed by a gauge metric or even be stochastic, but it must be there for distinguish- 
ability to exist. Even so-called pure projective theorems are special cases o f theorems 
involving angles, which in turn imply separation and distance functions. Moreover, for 
each so-catied “pure” projective theorem there are metric theorems where a certain 
/roncoincidence occurs, matching a coincidence of the projective theorem, or whereby the 
angle implied by a given projective ratio is made explicit.
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tions in his 1964 book on quaternions and rotations (Oxford University 
Press) and of our own observations, independently arrived at in 1962; and 
it is implicit in H am ilton’s original work.

It is quite understandable that ordinary physics would find it inconvenient 
that the square of an operator should become negative. However, in 
quantum  mechanics tha t is not so inconvenient, and C. W, Kilmister in 
1949 was able to  dem onstrate that D irac’s theory could be made indepen­
dent of the metric, and hence simpler, by introducing quaternions. In a 
London conversation with Lancelot Law Whyte, who brought to  my 
attention for the first time his 1954 paper (among others) (27), I noted that 
he too had noticed this fact, and Kilmister and he have the priority for 
underlining it. In the history of ideas it is usually a new emphasis or implica­
tion of past knowledge rather than pure innovation that constitutes his­
torical novelty; for quaternions-as-angles is implied in Ham ilton’s work.

Certain findings of quantum physics not only substantiate the conclusion 
of a physical (i.e., not merely pseudo-Euclidean) fourth spatial dimension, 
but suggest that the spatial dimensionality o f our physical universe may 
well run as high as eight dimensions, for the almost exact rational value o f 
the fme-structure constant 1/137 suggests strongly the existence o f the 
unique eight-dimensional lattice composed o f two kinds o f cells such that 
every 137 o f them forms an  identical group whose constituents are 128 
eight-dimensional tetrahedra and 9 eight-dimensional octahedra.

There is no higher finite dimension than 8  that can form a lattice com­
posed solely o f tetrahedra and/or octahedra, which are the two simplest 
regular forms in any dimension, since they have the fewest vertices. Therefore 
the eighth dimension is an upper limit for lattice regularity and simplicity. 
Its characteristic number, 137, interestingly points to the fme-structure 
constant. The exact value o f that constant, 1/137.04, suggests that there is a 
slight curvature o f the lattice in at least the ninth dimension, thus allowing 
slightly more cells per unit of eight-dimensional space. One cell would thus 
constitute approximately 1/137th o f the repeating group pattern o f 137 
(-=9+128) cells.

The author has also noted (17, p. 242) that the fine structure constant 
governs the ratio of an electron’s mean radius r to the mean radius a of its 
orbit by the simple equation (rla)U2~  1/137, thus suggesting that the rela-
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lion of an electron to the whole configuration of its orbit about the proton 
is in some sense isomorphic to that of one cell o f the eight-dimensional 
lattice considered as a unit of the entire group pattern of 137 cells. The 
necessity for at least a fourth physical dimension (specifically for a 
four-dimensional cylinder, whose cross section is a spheroid) to explain the 
observed phenomenon of a gravitational field (in press, N ational Research 
Council of Italy, Rome) is, however, quite independent o f the existence of 
the spatially eight-dimensional lattice thus indicated by quantum  physics.

Thus quaternions do not go far enough. I have long felt that the problems 
of bio-, psycho-, and sociomorphogenesis will not be solvable until placed 
on a firm mathematical basis, and that that basis lay in the direction of 
conditionally randomized hypercomplex variables and their functions, 
involving a hypercomplex algebra of at least 15 /-elements, which with t0  

comprise the first complete algebra where multiplication becomes non­
distributive, and where pairs of annihilation operators can arise.

In  a valuable technical paper9  just called to our attention byA RTO RG A ’s 
knowledgeable editor, Dr. M arcus C. Goodall of the Departm ent o f 
Physics, University of Boston, has already used an algebra—which he calls 
Q g(z)—isomorphic to Cayley algebra, to resolve some basic problems of 
quantum  field theory in both concrete and elegant fashion. Goodall is also 
one of the few who is aware of the pertinence o f algebraic field theory to 
quantum  mechanics. It may be noted here that this pertinence was implicit 
ever since the theory of Riemann surfaces was linked with that o f algebraic 
fields by means o f multiperiodic functions.

In  this connection our proof of the existence o f half-integer genus 
(presented for us a t a  1965 meeting of the American M athematical 
Society) is relevant, as that concept contains the key to the development of 
an adequate and more sophisticated theory of transform ation groups and 
automorphisms, including anti-, enantiomorphic, or m irror transform a­
tions, and those more complicated ones which are lens-like rather than 
merely mirror-like. We shall end by observing that hypercomplex number 
theory and its related algebraic structures will be found increasingly 
necessary and relevant not only to quantum physics, but to  biology, psy­

9 Not yet published. B ased in part on a 1965 report (AFCRL-65-503), U.S. A ir Force
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chology, sociology, and even to that dim vista o f a scientific theory of 
history, i.e., eventology. There is much to be done and worked out, and the 
prospccts are exciting.

IX. Relations to Function Theory

Functional analysis rests upon function theory, which in turn rests upon 
algebraic theory. As we have shown, an algebra is no more comprehensive 
than the nature of the numbers that give rise to it. Complex numbers give 
rise to a more comprehensive theory of functions than do real numbers, and 
also generate an algebra (G) which is more comprehensive than ordinary 
algebra (R), i.e., which embeds R.

Thus the theory of numbers in its deepest sense, as the theory o f the 
kinds of possible numbers and their operations (i.e., the algebras pertaining 
thereto), is the basis of function theory and functional analysis. Change the 
kind o f number and you change the algebra and hence the function theory. 
Such changes, moreover, are in conformity with the theory of hypercomplex 
numbers and their appropriate algebraic structures.

Thus number theory as here defined controls any theory of functions and 
functional analysis. We have already pointed out8 that Bourbakian set 
theory is inadequate for functional analysis. Aside from being poorly 
motivated, pedantically cumbersome, inelegant, and rather artificially ugly, 
with far more manner than matter, it commits the reductive fallacy of 
attempting to deny the necessary existence of distance in any valid theory 
of ensembles of more than one nonnull member or element. The very fact 
o f more than one such element presupposes distinguishability, which in turn 
implies, at any given moment of the existence of such an ensemble, distance 
or number in some context. Thus number theory as we have defined it is 
the sine qua non o f the theory of ensembles. The natural extension of function 
theory, and hence of functional analysis, lies then in the direction of the 
theory o f  functions o f one or more hypercomplex variables. Thus a C- 
vanable is a variable all the possible values of which are Cayley numbers. 
There would be two kinds o f right and left inverse functions o f such a 
variable because the algebra is not simply anticommutative but also anti- 
associative. Similarly an H-variable would enter into quaternion o r H- 
functions, and these would be able to have no more than one left- and
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right-hand inverse. Moreover, since the nonassociativity o f C-algebra is 
not mandatory, the extra inverses o f C-functions would not exist in certain 
cases. As an example o f H-functions, let us consider the series development 
of one of the simplest types o f right-handed analytic quaternion functions. 
The coefficients, it will be noted, involve (1/27T2) or the reciprocal unit- 
sphere surface in D4, that surface thus being the measure for the integral. 
These coefficients in the neighborhood of the origin are given by

where Hp and are limiting hypersurfaces including the origin and (p ) 
and (?) are functions involving Fueter’s p- and ^-functions, which may be 
taken as the analogues of z n and in the suitably generalized Laurent 
expansion, respectively.

The coefficients of C-functions would, as said before, involve in general 
two distinct varieties of right-left parity. They would also contain as a 
factor the reciprocal surface of the unit hypersphere in Z>8, i.e., (3/tt4), the 
D s unit hyperspherical surface (i.e., convex D-) being now the metric 
measure. Naturally, complex functions, being in G-space, have as their 
measure in this sense l / 2 ir or the reciprocal o f the D2 sphere surface, i.e., the 
reciprocal of a circular circumference; and this constant abundantly appears 
in  the theory and theorems of a complex variable.

Very little is known as yet about H-functions} and C-functions have not 
been considered at all to  the writer’s knowledge. Neither of course have 
N-functions, since N-algebra, and hence N-numbers, have hitherto been 
unknown. Since the entire development of algebraic structures beyond N  
has been seen to rest upon the nature o f zero itself, function theory in N- 
and higher algebras will involve precise knowledge of the laws o f zero 
formation, of the interaction of zeros of different varieties, and o f the 
results, in terms o f the parabolic and loxodromic numbers, which lie beyond 
the entire hypercomplex number field, as already explained. The m athe­
matics appropriate to biology, psychology, and even to physics in its

and by
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quantum  aspect will not be found distinctively to be statistical, bu t rather 
number-theoretical, the word "num ber” being used here in its most pro­
found sense, which includes all the possible kinds o f number (see Addendum),

In conclusion we must observe that aside from being rather sterile, linear 
black-box theory is inapplicable to either nature or manmade devices, all of 
which im portantly and fundamentally involves hysteresis, friction, resist­
ance, viscosity, or some other equally inescapable and pervasive form of 
increase of entropy; and hence involves nonlinear partial differential 
equations, which are the rule—any apparent exceptions being simply 
idealizations, that is to  say fictions, and often not useful ones.

Consider now the following nonlinear partial differential system:

i.e., an ellipsoid. Now if even such a comparatively simple object as an 
ellipsoid leads to a nonlinear partial differential equation, we can easily 
grasp the unreality of suggesting that far more complicated forms and 
phenomena could be adequately handled by linear methods.

There thus remain two open vistas for the development o f the theory of 
functions: (1) a deepening of number theory, and hence of algebra and 
function theory, in the direction of more inclusive kinds of num bers; and 
(2) a development of a theory o f nonlinear operators and nonlinear differen­
tial equations. These two paths need not be unrelated.

Closely related to the latter are the ordinary differential equations 
with periodic solutions, such as may arise in the solution of the wave 
equation by means of curvilinear coordinates. In this connection the work 
o f  Professors F. M. Arscott and Kathleen M. Erwin on ellipsoidal and 
paraboloidal wave functions and their differential equations deserves 
mention.

A solution is
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For some time we have felt that the theory of turbulence, and in particular 
o f  turbulent waves, might benefit if a solution of the wave equation could 
be found in an orthogonal system which we have termed catenoida! co­
ordinates, formed by the two kinds ( 1  and 2  sheets) o f catenoids of revolu­
tion plus the family o f surfaces orthogonal to both. Such a system would 
not simply be based on a quadric equation, bu t upon one o f infinite degree 
which would, we nave reason to believe, have direct relevance to a system 
of turbulent waves. We have not had time to work out the separation of the 
wave equation by this means, but enough has been said for any with the 
necessary interest to do so.

The end of our journey is thus a panoram a of open vistas, which is not 
only appropriate to the hypercomplexly multivalued nature of \ /-~  I with 
which we began, but to mathematics itself, which is in so many ways the 
least dogmatic and most unexpected of all sciences.

In connection with the hypercomplex, multiple values of l> a defect 
o f the present theory o f ideals should be noted, to which earlier passing 
reference was made. Ideal numbers have been considered to be either roots 
o f complex numbers or inexpressible, which would be inconsistent. To 
remedy this defect, ideal numbers must be considered as roots of hyper­
complex numbers.

Although all ideals of quadratic fields can be expressed as roots of 
complex numbers, those of cubic and higher fields cannot in general be so 
expressed unless “ complex” be extended to “ hypercomplex.” The lack of 
this theorem, that all ideal numbers are expressible as roots o f complex or 
hypercomplex numbers, is the principal source of obstacles in G. V oronoi’s 
otherwise satisfying exposition of cubic number fields, and in modern 
works on number fields.

Thus we return, in a new and higher sense, to the conception that ideals 
are lattices, a conception implicit m Kummer and explicit in Poincare and 
other contemporaries. It can further be shown that the mesh 
area of such lattices is constant. Higher ideals would then become 
higher-dimensional lattices, and we are again at the fundamental 
conception of a tangent hyper-sphere group and the loops of units and 
theory of multiplication of higher algebras, which has already been 
commented upon.
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X. Addendum on Group Theory

The valuable result o f Hall (10), termed “exciting” by Coxeter, that 
there exist ternary and not only binary operation groups, is, however, but 
the beginning o f an infinite sequence. The operation that is the basis of 
H all’s ternary groups is ax+ b ,  i.e., an operation combining multiplication 
and addition, either of which alone is but a binary operation. But a  qua­
ternary group is formable on the operational basis of ax* + bx+  c, and an 
M-ary group, on the basis

Hence the theory of «-ary groups becomes a mathematico-Jinguistic 
transform ation of the existing theory of polynomials, and thus is full of 
interesting isomorphisms, relevant also to function theory,

XI. Addendum on Higher Kinds of Number

The Greeks considered suspect and abnormal any number x  such that 
k  x  < 0 where k  was any positive number. Renaissance man, though he had 
long accepted negative numbers as just as natural as positive numbers, 
still balked a t x  where x 2~  - 1 ,  although he used such numbers to  solve 
some quadratic equations.

It took until the 19th century until m an’s mind could regard these 
numbers too as nonpathological, although the designation “ imaginary” 
still clings to them.

In the 20th century, Eduard Study first considered a number x  not equal 
to zero and such that x2- 0 ;  although Study still had no realization that this 
implies also x °—0, and an advanced form of nondistributive multiplication. 
The present survey has revealed the evolutionary ancestors of p  namely, 
numbers such as a and b, neither zero nor infinite nor equal, and such that 
a b - 0 ; the next higher nondistributive number being given by a -0 ~ b .

The foregoing paper has also developed numbers beyond p, namely, a 
nonzero q, such that =  ?4=B0; qj=q2¥‘qy^ 0 ;  and, unlike all the pre­
ceding numbers, with q2 and q- irreducible to any real number or any lower 
power of q.

It is also noteworthy that l / u ^ u -1 is true for « = ? ;  and that 1/k2# m-2



and 1/u3 ^  «~3are true also for u ^ q ,  The nonrepresentability o f reciprocals 
in terms o f powers o f their denom inators is deeply related to the enantio- 
morphic phenomena that begin to be noticeable in what may be called the 
third metadimension, that of the ^-numbers, the realm of the ^-numbers 
constituting the fourth metadimension, whereas that of (hyper)imaginary 
or /-numbers constitutes the second, while the real axis represents the first 
metadimension, since it may represent any dimension of real space; all these 
being copies of each other. But the dimensions of the higher metadimen­
sions are not copies of each other. For even the two first dimensions, ij and 
t2, of the second metadimension cannot be exact copies, since it is no longer 
true that i l -i2 and i2'»i are equal.

The metadimensions are isomorphic to the kinds of number, which in turn 
are characterized by their unit power fields, i.e., the function their unit 
traces out in a suitably defined representation plane, when it is reiteratediy 
multiplied by itself. Thus the unit field form shows the self-reflexive opera­
tion of the given unit or kind of number.

The forms for the five kinds of number with unit power fields of real, finite 
degree are shown in Table III. In another context, in 1962, we defined the 
first six metadimensions: those with real field forms.

TABLE HI

Meta-
dimen­

sion
Kind 

o f number

Character­
istic unit 

operation
Unit 

field form Degree

1 Real «2= 1 jf2 =* I or a =  ±1 Bilinear
2 Imaginary and 

hyperunaginary
1 X 2 +  J'*ss 1 Quadratic

3 ^-Numbers |  mcta- a ^ O (x2 +  ̂ > ^ =  1 Quartic
4 3'Numbers j imag- « * = 0 y 1—x* — x i Sextic
5 w-Numbersi inary l/«*=0 y = x 4 ±  (x+2) (jf2— 1 )1'2 Occic

It will be observed that the ̂ -numbers are the last with a finite, symmetric 
unit field form. The iv-numbers have no longer either a finite or symmetric 
field form, and hence develop another (asymmetric enantiomorph) type of 
field form when the factor (x + 2 ) is replaced by ( * - 2 ) .  The orders of w-
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numbers (analogous to i ^ i ,  i2 =  j ,  h  = etc.) may be represented by

The negative orders from ( - 2 )  asymmetrically m irror the nonnegative 
orders from the zeroth onward. But the ( — l)st order yields the equation 
y 7==x*±x(x2- 1 ) 1/2 which interestingly yields, on the substitution x-+ tx 
the cognate form x* ± x (xz +  1)I/2.

Beyond the w-numbers, more vast changes occur. The unit field form  o f 
the sixth metadimension is no longer representable by an equation o f finite 
degree; and the seventh metadimension requires a  unit field equation which 
is a function o f a nonreal variable.

Finally, it can be shown that the eighth metadimension is necessarily non- 
representable in any representation space, and that it contains all meta- 
dimensions beyond itself by an inherent, self-induced continuation.

It thus turns out that there are eight possible basic kinds of number (each 
with their own infinities), plus zero.

The higher kinds of number for the first time yield concrete hope o f 
placing the profound and subtle characteristics of bio-, psycho-, and socio- 
transform ations and processes on an adequate mathematical basis. Such 
kinds o f number would thus introduce the humanities to their appropriate 
mathematics, which will not do them the grave and unscientific injustice of 
forcing them to fit some Procrustean bed o f inadequate hypothesis or 
reductive definition. M an and m an’s sciences are now ready to go beyond 
the square roo t of minus one. W ith each new and higher kind o f num ber a 
new and deeper algebra and arithmetic become possible, and hence a new 
and deeper functional analysis.
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